研究生: |
鍾瑋剛 Chung, Wei Kang |
---|---|
論文名稱: |
以金催化之環化加成反應合成具有高價值的有機化合物 Gold-catalyzed Cycloaddition Reactions for Synthesis Valuable Organic Molecules |
指導教授: |
劉瑞雄
Liu, Rai Shung |
口試委員: |
吳明忠
Wu, Mi Ju 蔡易州 Tsai, Ti Chou |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 165 |
中文關鍵詞: | 金催化 、環化加成反應 、雜環化合物 、合成方法 |
外文關鍵詞: | Gold-catalysis, Cycloaddtion, Heterocycles, Synthetic methods |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇碩士論文的主旨是藉由金錯合物的催化下發展新型的有機合成方法。
在第一章中,我們使用三氯化金作為催化劑搭配Selectflour作為氧化劑,催化苯胲衍生物進行分子內的環化加成反應而生成喹啉。此催化反應可以在溫合的反應條件下進行並且具有不錯的官能基容忍度。
而在第二章中,我們使用金錯合物催化叔丁酯衍生物和醛類或酮類進行雜環類的[4+2]環化加成反應,可以有效率地得到含有1,3-dioxin-4-one結構的產物並且此催化反應具有非常好的官能基容忍度。而以丙酮作為助劑,我們可以成功地以骨架重排方法使得叔丁酯衍生物和烯醇醚進行環化加成反應而得到非典型的[4+2]環化加成產物。
This thesis describes developments of new organic transformations using gold catalysis.
First chapter deals with gold catalyzed synthesis of quinolines from hydroxylamines using selectfluor as an oxidant. The reaction have broad substrate scope under mild reaction conditions.
Second chapter deals with gold-catalyzed formal hetero-[4+2] cycloadditions of tert-butyl propiolates with carbonyl compounds, which proceeded efficiently to yield 1,3-dioxin-4-one derivatives over a wide scope of substrates. With acetone as a promoter, gold-catalyzed cycloadditions of these propiolate derivatives with enol ethers led to the formation of atypical [4+2]-cycloadducts with skeletal rearrangement.
First chapter:
[1] a) J. P. Michael, Nat. Prod. Rep. 1997, 14, 605. b) J. P. Michael, Nat. Prod. Rep. 2001, 18, 543. c) P. R. Kym, M. E. Kort, M. J. Coghlan, J. L. Moore, R. Tang, J. D. Ratajczyk, D. P. Larson, S. W. Elmore, J. K. Pratt, M. A. Stashko, H. D. Falls, C. W. Lin, M. Nakane, L. Miller, C. M. Tyree, J. N. Miner, P. B. Jacobson, D. M. Wilcox, P. Nguyen, B. C. Lane, J. Med. Chem. 2003, 46, 1016. d) L. Strekowski, M. Say, M. Henary, P. Ruiz, L. Manzel, D. E. Macfarlane, A. J. Bojarski, J. Med. Chem. 2003, 46, 1242. e) W. Sawada, H. Kayakiri, Y. Abe, K. Imai, A. Katayama, T. Oku, H. Tanaka, J. Med.Chem. 2004, 47, 1617. f) Funayama, S.; Murata, K.; Noshita, T. Heterocycles 2001, 54, 1139. g) Balasubramanian, M.; Keay, J. G. Isoquinoline Synthesis. In Comprehensive Heterocyclic Chemistry II; McKillop, A. E., Katrizky, A. R., Rees, C. W., Scrivem, E. F. V., Eds.; Elsevier: Oxford, UK, 1996; Vol. 5, p 245. h) Claret, P. A.; Osborne, A. G. In The Chemistry of Heterocyclic Compounds, Quinolines; Jones, G., Ed.; John Wiley and Sons: Chichester, 1982, Vol. 32, Part 2, p 31. i) Sawada, Y.; Kayakiri, H.; Abe, Y.; Imai, K.; Katayama, A.; Oku, T.; Tanaka, H. J. Med. Chem. 2004, 47, 1617. J) A. P. Gorka, A. de Dios, P. D. Roepe, J. Med. Chem. 2013, 56, 5231.
[2] a) H. C. Kolb, M. S. VanNieuwenhze, K. B. Sharpless, Chem. Rev. 1994, 94, 2483. b) R.O. Larsen, E. G. Corley, A. O. King, J. D. Carroll, P. Davis, T. R. Verhoeven, J. Org. Chem. 1996, 61, 3398. c) X. Zhang, A. S. Shetty, S. A. Jenekhe, Macromolecules 1999, 32, 7422. d) S. A. Jenekhe, L. Lu, M. M. Alam, Macromolecules 2001, 34, 7315. e) T. Gunnlaugsson, D. A. MacDonaill, D. J. Parker, J. Am. Chem. Soc. 2001, 123, 12866. f) J. L. Kim, I. S. Shin, H. Kim, J. Am. Chem. Soc. 2005, 127, 1614. g) E. M. Nolan, J. Jaworski, K.-I. Okamoto, Y. Hayashi, M. Sheng, S. J. Lippard, J. Am. Chem. Soc. 2005, 127, 16812.
[3] a) P. A. Claret, A.G. Osborne, The Chemistry of Heterocyclic Compounds; Quinoline, G. Jones, Ed.; John Wiley Sons: U.K., 1982; Vol. 32, Part 2, 31-32. b)
M. Balasubramanian, J. G. Keay, In Comprehensive Heterocyclic Chemistry II; A. R. Katritzky, C. W. Rees, E. F. V. Scriven, Pergamon Press: Oxford, U.K., 1996; Vol. 5, 245. c) M. J. Sandelier, P. DeShong, Org. Lett. 2007, 9, 3209. d) S.-Y. Tanaka, M. Yasuda, A. Baba, J. Org. Chem. 2006, 71, 800. e) Y.-C. Wu, L. Liu, H.-J. Li, D. Wang, Y.-J. Chen, J. Org. Chem. 2006, 71, 6592. f) Y.-L. Zhao, W. Zhang, S. Wang, Q. Liu, J. Org. Chem. 2007, 72, 4985. g) K. O. Hessian, B. L. Flynn, Org. Lett. 2006, 8, 243. h) X. X. Zhang, M. A. Campo, T. L. Yao, R. C. Larock, Org. Lett. 2005, 7, 763. i) B. Janza, A. Studer, Org. Lett. 2006, 8, 1875. j) Q. Zhang, Z. G. Zhang, Z. H. Yan, Q. Liu, T. Y. Wang, Org. Lett. 2007, 9, 3651-3653. k) R. Zong, H. Zhou, R. P. Thummel, J. Org. Chem. 2008, 73, 4334. l) D. A. Powell, R. A. Batey, Org. Lett. 2002, 4, 2913. m) I. S. Cho, L. Gong, J. M. Muchowski, J. Org. Chem. 1991, 56, 7288. n) E. C. Riesgo, X. Jin, R. P. Thummel, J. Org. Chem. 1996, 61, 3017. o) Y. Wu, L. Liu, H. Li, D. Wang, Y. Chen, J. Org. Chem. 2006, 71, 6592. p) S. E. Denmark, S. Venkatraman, J. Org. Chem. 2006, 71, 1668.
[4] a) Z. H. Skraup, Ber. Dtsch. Chem. Ges. 1880, 13, 2086. b)R. H. Baker, S. W. Tinsley Jr., D. Bulter, B. Riegel, J. Am. Chem. Soc. 1950, 72, 393. c) P. Friedländer, Ber. Dtsch. Chem. Ges. 1882, 15, 2572. d) Y. Hsiao, N. R. Rivera, N. Yasuda, D. L. Hughes, P. J. Reider, Org. Lett. 2001, 3, 1101. e) Y.-Z. Hu, G. Zhang, R. P. Thummel, Org. Lett. 2003, 5, 2251. f) P. G. Dormer, K. K. Eng, R. N. Farr, G. R. Humphrey, J. C. McWilliams, P. J. Reider, J. W. Sager, R. P. Volante, J. Org. Chem. 2003, 68, 467. g) B. R. McNaughton, B. L. Miller, Org. Lett. 2003, 5, 4257. h) E. Tang, D. Mao, W. Li, Z. Gao, P. Yao, Heterocycles 2012, 85, 667.
[5] a) Z. Zhang, J. Tan, Z. Wang, Org. Lett. 2008, 10, 173. b) Y. Zhang, M. Wang. P. Li, L. Wang, Org. Lett. 2012, 14, 2206.
Second chapter:
[1] Hudlicky, T.; Natchus, M. G. In Organic Synthesis: Theory and Applications; Hudlicky, T., Ed.; JAI: Greenwich, CT, 1993; Vol. 2, pp 1–23.
[2] Carruthers, W. Cycloaddition Reactions in Organic Synthesis; Pergamon: Oxford, 1990.
[3] Kobayashi, S.; Jorgensen, K. A. Cycloaddition Reactions in Organic Synthesis; Wiley-VCH: Weinheim, Germany, 2002.
[4] (a) Bertz, S. H. J. Am. Chem. Soc. 1981, 103, 3599. (b) Curran, D. P., Ed. Advances in Cycloaddition; JAI Press: Greenwich, 1994; Vol. 1-3. (c) Trost, B. M. Angew. Chem., Int. Ed. 1995, 34, 259. (d) Lautens, M.; Klute, W.; Tam, W. Chem. Rev. 1996, 96, 49. (e) Kotha, S.; Brahmachary, E.; Lahiri, K. Eur. J. Org. Chem. 2005, 4741. (f) Shibata, T.; Tsuchikama, K. Org. Biomol. Chem. 2008, 6, 1317. (g) K. Tanaka, Chem. Asian J., 2009, 4, 508.
[5] a) Lautens, M.; Klute, W.; Tam, W. Chem. Rev. 1996, 96, 49. (b) Gorin, D. J.; Sherry, B. D.; Toste, F. D. Chem. Rev. 2008, 108, 3351. c) Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180. d) Jiménez-Núñez, E.; Echavarren, A. M. Chem. Rev. 2008, 108, 3326. e) Echavarren, A. M.; Nevado, C. Chem. Soc. Rev. 2004, 33, 431. f) Fürstner, A. Chem. Soc. Rev. 2009, 38, 3208. g) Krause, N.; Winter, C. Chem. Rev. 2011, 111, 1994. h) Corma, A.; Leyva-Pérez, A.; Sabater, M. J. Chem. Rev. 2011, 111, 1657. i) Shen, H. C. Tetrahedron 2008, 64, 7847.
[6] a) Gorin, D. J.; Toste, F. D. Nature 2007, 446, 395. b) Fürstner, A.; Davies, P. W. Angew. Chem., Int. Ed. 2007, 46, 3410.
[7] a) G. Desimoni, G. Tacconi, Chem. Rev., 1975, 75, 651-692; b) K. P. Reber, S. D. Tilley, E. Sorensen, J. Chem. Soc. Rev., 2009, 38, 3022–3034.
[8] a) M. T. Crimmins, A. C. Smith, Org. Lett., 2006, 8, 1003-1006; b) R. S. Coleman, J. R. Fraser, J. Org. Chem., 1993, 58, 385-392; c) E. Fillion, D. Fishlock, J. Am. Chem. Soc., 2005, 127, 13144-13145; d) R. K. Boeckman, Jr., J. R. Pruitt, J. Am. Chem. Soc., 1989, 111, 8286-8288; e) J. Gebauer, S. Blechert, J. Org. Chem., 2006, 71, 2021-2025; f) R. K. Boeckman, Jr., C. H. Weidner, R. B. Perni, J. J. Napier, J. Am. Chem. Soc., 1989, 111, 8036-8037; g) N. Cramer, S. Laschat, A. Baro, H. Schwalbe, C. Richter, Angew. Chem., 2005, 117, 831-833; Angew. Chem., Int. Ed., 2005, 44, 820-822; h) B. M. Trost, J. L. Gunzner, O. Dirat, Y. H. Rhee, J. Am. Chem. Soc., 2002, 124, 10396-10415; i) R. K. Boeckman, Jr., P. Shao, S. T. Wrobleski, D. J. Boehmler, G. R. Heintzelman, A. J. Barbosa, J. Am. Chem. Soc., 2006, 128, 10572-10588; j) W. R. Roush, B. B. Brown, J. Org. Chem., 1993, 58, 2162-2172; k) H. Miyatake-Ondozabal, A. G. M. Barrett, Tetrhedron 2010, 66, 6331-6334.
[9] a) M. O. Adeboya, R. L. Edwards, T. Lassøe, D. J. Maitland, L. Shields and A. J. S. Whalley, J. Chem. Soc., Perkin Trans. 1 1996, 1419–1425. b) L. Liu, T. Bruhn, L. Guo, D. C. Gotz, R. Brun, A. Stich, Y.Che and G. Bringmann, Chem. Eur. J. 2011, 17, 2604–2613. c) L. Liu, S. B. Niu, X. H. Lu, X. L. Chen, H. Zhang, L. D. Guo and Y. S. Che, Chem. Commun. 2010, 46, 460–462. d) X.-L. Yang, J.-Z. Zhang and D.-Q. Luo, Nat. Prod. Rep. 2012, 29, 622-641. e) L. Liu, Y. Li, L. Li, Y. Cao, L. Guo, G. Liu and Y. Che, J. Org. Chem. 2013, 8, 2992−3000.
[10] a) L. Horner, E. Spietschka, Chem. Ber., 1952, 85, 225–229; b) S. V. Kol’tsova, V. P. Feshin, Russ. J. Org. Chem., 2001, 37, 1616–1620; c) B. Freiermuth, C. Wentrup, J. Org. Chem., 1991, 56, 2286–2289; d) K. Bell, D. V. Sadasivam, I. R. Gudipati, H. Ji, D. Birney, Tetrahedron Lett., 2009, 50, 1295–1297; e) J. A. Hyatt, P. L. Feldman, R. J. Clemens, J. Org. Chem., 1984, 49, 5105–5108; f) A. E. May, T. R. Hoye, J. Org. Chem., 2010, 75, 6054–6056.
[11] a) Danishefsky , S.; Kerwin, Jr , J. F.; Kobayashi, S. J. Am. Chem. Soc. 1982, 104, 358. b) Kurahashi, T.; Matsubara, S.; Fujiwara, K. J. Am. Chem. Soc. 2012, 134, 5512.
[12] Yeom, H.-S.; Koo, J.; Wang, Y.; Liang, Y.; Yu, Z.-X.; Shin, S. J. Am. Chem. Soc. 2012, 134, 208.
[13] Jørgensen, K. A. Angew. Chem. Int. Ed. 2000, 39, 3558.
[14] Audouard, C.; Bettaney, K.; Doan, C. T.; Rinaudo, G.; Jervis, P. J.; Percy, J. M. Org. Biomol, Chem. 2009, 7, 1573.