研究生: |
卓偉漢 Cho, Wei-Han |
---|---|
論文名稱: |
應用於無線通訊系統與光通訊系統接受器之前端放大器 Pre-Amplifiers for Wireless and Optical Receivers |
指導教授: |
徐碩鴻
Hsu, Shuo-Hung |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 65 |
中文關鍵詞: | 低雜訊放大器 、雜訊最佳化 、雙閘極電晶體 、變壓器回授式匹配電路 、RGC電流緩衝器 、反向器式轉阻放大器 、高速轉阻放大器 |
外文關鍵詞: | LNA, noise optimization, dual-gate transistor, transformer-feedback matching network, RGC current buffer, inverter-type TIA, high speed TIA |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
In this thesis, five pre-amplifiers for communication systems are discussed regarding the design, simulation, and measurements. According to their applications, they can be separated into two wireless receiver pre-amplifiers and three optical receiver pre-amplifiers.
For wireless receiver pre-amplifiers, an ultra-low-power 24 GHz low noise amplifier is implemented. By the noise optimization technique with MMIN as the design guideline, the ultra-low-power 24 GHz low noise amplifier attains a peak gain of 9.2 dB and minimum noise figure of 3.7 dB. Under 1V supply voltage, the circuit consumes only 2.78 mW. Another wireless receiver pre-amplifier, transformer-feedback dual-gate 24 GHz LNA, adopts the dual-gate transistors with gate-source transformer-feedback matching network and drain-source transformer-feedback matching network. It achieves a peak gain of 9.5 dB and a minimum noise figure of 4.7 dB. It is worth mentioning that under only 9.38 mW power consumption, the transformer-feedback dual-gate 24 GHz LNA exhibits excellent linearity of a -6 dBm P1dB and a 2.3 dBm IIP3.
For optical receiver pre-amplifiers, by detailed analysis of the regulated cascode (RGC) current buffer and inverter-type TIA, a 7Gb/s low-power TIA with serial inductor peaking is implemented achieving a ZT of 51.4 dBΩ and a bandwidth of 4.6 GHz. In addition, a 5 Gb/s ultra-low-power inductorless TIA demonstrates a ZT of 56.5 dBΩ and a bandwidth of 3.0 GHz, and a 7.5 Gb/s low-power inductorless TIA attaining a ZT of 53.5 dBΩ and a bandwidth of 4.3 GHz.
於此論文中,主要將探討五項通訊系統前端放大器之設計、模擬與量測,按照其應用可分為兩項無線通訊系統前端放大器與三項光通訊系統前端放大器。
在無線通訊系統前端放大器方面,此論文完成一項超低功率24 GHz低雜訊放大器(An ultra-low-power 24 GHz low-noise amplifier)。藉由以MMIN為準則之雜訊最佳化方法,其達成功率增益(Power gain) 9.2 dB、雜訊指數(Noise Figure) 3.7 dB,並且在1 V的供應電壓低下功耗僅2.78 mW。另一項變壓器回授式雙閘極24 GHz低雜訊放大器(A transformer-feedback dual-gate 24 GHz LNA)則採用雙閘極電晶體搭配閘極源極變壓器回授式匹配電路與汲極源極變壓器回授式匹配電路,達成9.5 dB功率增益與4.7 dB雜訊指數。值得一提的是,在僅9.38 mW功耗底下,其P1dB與IIP3分別為-6 dBm與2.3 dBm,展現了相當優良的線性度。
在光通訊系統前端放大器方面,藉由完整分析RGC(Regulated cascode)電流緩衝器與反向器式轉阻放大器(inverter-type TIA),分別達成增益51.4 dBΩ與頻寬4.6 GHz之7 Gb/s低功率串聯電感轉阻放大器(7 Gb/s low-power TIA with serial inductor peaking)、增益56.5 dBΩ與頻寬3.0 GHz之5 Gb/s超低功率無電感轉阻放大器(5 Gb/s ultra-low-Power inductorless TIA)以及增益53.5 dBΩ與頻寬4.3 GHz之7.5 Gb/s低功率無電感轉阻放大器(7.5 Gb/s low-power inductorless TIA)。
[1] J. Goo et al, “A noise optimization technique for integrated low-noise amplifiers,”IEEE Journal of Solid-State Circuits, vol. 37, pp. 994-1002, Aug. 2002.
[2] A. Bevilacqua and A. M. Niknejad, “An ultrawideband CMOS low-noise amplifier for 3.1─10.6-GHz wireless receivers,” IEEE Journal of Solid-State Circuits, vol. 39, pp. 2259-68, Dec. 2004.
[3] Terry Yao et al, “Algorithmic design of CMOS LNAs and Pas for 60-GHz Radio,” IEEE Journal of Solid-State Circuits, vol. 42, no. 5, pp. 1044-57, May 2007.
[4] T. Nguyen et al., “CMOS low-noise amplifier design optimization techniques,” IEEE Transactions on Microwave Theory and Techniques, vol. 52, no. 5, pp. 1433-1442, May. 2004.
[5] Y. Lin, S. Hsu, J. Jin, and C. Chan, “A 3.1-10.6 GHz ultra-wideband CMOS low noise amplifier with current-reused technique,” IEEE Microwave Wireless Components Letters, vol. 17, no. 3, pp. 232-234, Mar. 2007.
[6] S. Shin, M. Tsai, R. Liu, K. Lin, and H. Wang, “A 24-GHz 3.9-dB NF low-noise amplifier using 0.18μm CMOS technology,” IEEE Microwave Wireless Components Letters, vol. 15, no. 7, pp. 448-450, July 2005.
[7] M. A. T. Sanduleanu, G. Zhang, and J. R. Long, “31-34GHz low noise amplifier with on-chip microstrip lines and inter-stage matching in 90-nm baseline CMOS,” in Proc. IEEE RFIC Symposium, pp. 143–145, June 2006.
[8] E. Adabi, B. Heydari, M. Bohsali, and A. M. Niknejad, “30 GHz CMOS low noise amplifier,” in Proc. IEEE RFIC Symposium, pp. 625–628, June 2007.
[9] A. Sayag et al., “A 25 GHz 3.3 dB NF low noise amplifier based upon slow wave transmission lines and the 0.18 μm CMOS technology,” in Proc. IEEE RFIC Symposium, pp. 373-376, June 2008.
[10] Y. Wei, S. Hsu, and J. Jin, “A low-power low-noise amplifier for K-band applications,” IEEE Microwave Wireless Components Letters, vol. 19, no. 2, pp. 116-118, Feb. 2009.
[11] C. P. Yue and S. S. Wong, “On-chip spiral inductors with patterned ground shields for Si-based RF IC’s,” IEEE Journal of Solid-State Circuits, vol. 33, no. 5, pp. 743-52, May 1998.
[12] R. Fujimoto, K. Kojima, and S. Otaka, “A 7-GHz 1.8-dB NF CMOS low-noise amplifier,” IEEE Journal of Solid-State Circuits, vol. 37, no. 7, pp. 852-56, July 1998.
[13] S. Jen et al, “Accurate modeling and parameter extraction fro transistors valid up to 10 GHz,” IEEE Transactions on Electronic Devices, vol. 46, pp. 2217-27, Aug. 1999.
[14] K. Liang and Y. Chan, “ A 0.18 μm dual-gate CMOS model for the design of 2.4 GHz low noise amplifier,” in Proc. IEEE RFIC Symposium, June 2006.
[15] M. Reiha and J. Long, “A 1.2 V reactive-feedback 3.1-10.6 GHz low-noise amplifier in 0.13 μm CMOS” IEEE Journal of Solid-State Circuits, vol. 42, no. 5, pp. 1023-33, May 2007.
[16] D. Cassan and J. Long, “A 1-V Transformer-feedback low-noise amplifier for 5-GHz wireless LNA in 0.18-μm CMOS” IEEE Journal of Solid-State Circuits, vol. 38, no. 3, pp. 427-35, Mar. 2003.
[17] X. Guan and A. Hajimiri,” A 24-GHz CMOS front end” IEEE Journal of Solid-State Circuits, vol. 39, no. 2, pp. 368-373, Feb. 2004.
[18] K. Yu et al, ”K-Band low-noise amplifiers using 0.18 μm CMOS technology,” IEEE Microwave Wireless Components Letters, vol.14, no.3, pp.106-108, Mar. 2004.
[19] M. Haurylau et al, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE Journal of Selected Topic in Quantum Electronics, vol. 12, no. 6, pp. 1699-1705, Nov./Dec. 2006.
[20] S. Park and H. Yoo, “1.25-Gb/s regulated cascode CMOS transimpedance amplifier for gigabit Ethernet application,” IEEE Journal of Solid-State Circuits, vol. 39, no. 1, pp. 112-21, Jan. 2004.
[21] S. Park and S. Hong, “A 65-mW 5-Gb/s/ch current-mode common-base transimpedance amplifier array for optical interconnects,” IEEE Photonics Technology Letters, vol. 15, no. 8, pp. 1138-40, Aug. 2003.
[22] S. Goswami et al, “A 14mW 5Gb/s CMOS TIA with gain-reuse regulated cascode compensation for parallel optical interconnects,” in IEEE International Solid-State Circuits Conference, pp. 100-101, 101a, Feb. 2009.
[23] B. Analui and A. Hajimiri, “Bandwidth enhancement for transimpedance amplifier”, IEEE Journal of Solid-State Circuits, vol. 39, no. 8, pp. 1263–1270, Aug. 2004
[24] C. Wu, C. Lee, W. Chen, and S. Liu, “CMOS wideband amplifiers using multiple inductive-series peaking technique,” IEEE Journal of Solid-State Circuits, vol. 40, no. 2, pp. 548–552, Feb. 2005
[25] Jun-De Jin and Shawn S. H. Hsu, Member, IEEE, “A 75-dBΩ 10-Gb/s Transimpedance Amplifier in 0.18-μm CMOS Technology,” IEEE Photonics Technology Letters, vol. 20, no. 24, december 15, 2008