簡易檢索 / 詳目顯示

研究生: 廖曼琳
Liao, Man-Lin
論文名稱: 四元合金量子點合成與性質
Synthesis and characterization of alloyed quaternary quantum dots
指導教授: 陳學仕
Chen, Hsueh-Shih
口試委員: 李紫原
Lee, Chi-Young
賴志煌
Lai, Chih-Huang
梁晃千
Liang, Huang-Qian
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2018
畢業學年度: 107
語文別: 英文
論文頁數: 97
中文關鍵詞: 合金量子點表面電荷缺陷十二硫醇高能隙材料時間解析螢光光譜X射線光電子能譜儀
外文關鍵詞: alloyed quantum dots, 1-dodecanethiol, surface stoichiometry, surface trap
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究致力於合成及探討鋅鎘硒硫四元合金量子點,量子點的發光波長可
    以經由陽離子濃度、陰離子濃度、陰離子前驅物的注射量、反應溫度作調控。此
    外,藉由不同硫前驅物如: ODE-S、TOP-S 及十二硫醇 (DDT),探討其對量子點
    表面組成的影響。表面分析方面,我們以 X 射線光電子能譜儀去分析量子點表
    面元素組成,結果顯示表面硫元素比例上升會伴隨量子點發光效率下降,搭配時
    間解析螢光光譜證實發光效率下降是源於量子點表面電荷缺陷變多所致,導致
    光致發光的生命週期變短。於三種硫前驅物中,因十二硫醇常被視為路易士鹼,
    不僅可作為有機配位體亦可以提供電子,填補並鈍化量子點的表面電荷缺陷,使
    發光生命週期增長、發光效率提升。接著,我們於四元合金量子點的外層包覆能
    隙更大的材料作為保護層,能夠更有效地侷限電子電洞,進一步提升發光效率。
    比較此三種硫前驅物,皆可製備出四元合金量子點,而採用十二硫醇為硫前驅物
    的製程相對省時並大幅降低成本,未來更有發展性。


    In this study, the PL wavelength of ZnCdSeS alloyed QDs can be tuned from 510 to 540 nm through cation concentration, anion concentration, injection amount of precursor and reaction temperature. In a shelling process, it is found that the optical
    properties differ with different surface stoichiometries of QDs. With the aid of X-ray photoelectron spectroscopy and photoluminescence study, we found that nonradiative
    surface trap increases with increasing S-rich surface of QDs, which results in a shorter PL lifetime. On the other hand, 1-dodecanethiol passivates the surface traps and hence
    eliminates the nonradiative recombination, resulting in a longer PL lifetime. Finally, growth of ZnSeS shell on ZnCdSeS QDs eliminates the surface traps and improves the photoluminescence efficiency. Considering time consumption and precursor cost, 1-
    dodecanethiol process is more attractive in the future synthetic procedure.

    Table of contents Chapter 1 Introduction……………………………………………………………...8 Chapter 2 Literature Review……………………………………………………….10 2.1 Size and structure of quantum dots……………………………………………...10 2.1.1 Size effect……………………………………………………………………10 2.1.2 Core-shell quantum dots……………………………………………………..12 2.1.3 Alloyed quantum dots……………………………………………………….15 2.2 Synthetic route………………………………………………………………….20 2.2.1 Hot-injection method………………………………………………………..20 2.2.2 Non-injection method……………………………………………………….22 2.3 Optical properties………………………………………………………………25 2.3.1 Surface stoichiometry of quantum dots……………………………………...25 2.3.2 Radiative and non-radiative emission……………………………………….31 2.3.3 Photoluminescence decay………………………………………………… ...32 Chapter 3 Experimental Procedure……………………………………………….34 3.1 Nanocrystal synthesis………………….………………………………………..34 3.1.1 Chemicals………………….………………………………………………...34 3.1.2 Synthesis of ZnCdSeS (core) QDs………...…………………………………34 3.1.3 Synthesis of “core + S” QDs…………………..……………………………..34 6 3.1.4 Synthesis of “core/ZnS shell” QDs……..……………………………...35 3.2 Characterization and instruments………………………………………………36 3.2.1 Optical characterization……………………………………………………..36 3.2.2 X-ray powder diffraction……………………………………………………36 3.2.3 High resolution transmission electron microscopy…………………………39 3.2.4 X-ray photoelectron spectroscopy…………………………………………..40 3.2.5 Time-correlated single photon counting…...………………………………...43 3.2.6 Inductively coupled plasma-mass spectrometer…………………………….45 Chapter 4 Results and Discussion…………………………………………………46 4.1 ZnCdSeS (core) QDs……………………………………...…………..………...46 4.1.1 Characterization of ZnCdSeS QDs…………….…………………………….46 4.1.2 Optical properties of ZnCdSeS QDs……………..…………………………..51 4.1.3 PL wavelength-tunable ZnCdSeS QDs………...……………………………52 4.2 “Core+S” QDs…………………..…………….………..……………………….58 4.2.1 Optical properties of “core + S” QDs…………..…………………………….58 4.2.2 Surface composition of “core + S” QDs………….………………………….60 4.2.3 Luminescence decay dynamics for “core + S” QDs………..………………...68 4.2.4 Characterization of thiol ligands…………….……………………………….71 4.3 “Core/ZnS shell” QDs……………………………………………………….....74 4.3.1 Optical properties of “core/ZnS shell” QDs…...……………………….74 4.3.2 Characterization of “core/ZnS shell” QDs…..…………………………79 4.4 Comparison of three processes…………………………………………………83 4.4.1 Thermal stability of QD films………………………………………………83 4.4.2 Process accessibility………………………………………………………...86 Chapter 5 Conclusions……………………………………………………………. 87 References…………………………………………………………………………...88 Appendix…………………………………………………………………………….94

    References
    1 J. Mirzaei, M. Reznikov and T. Hegmann, J. Mater. Chem., 2012, 22, 22350-22365.
    2 W. W. Yu, L. H. Qu, W. Z. Guo, and X. G. Peng, Chem. Mater., 2003, 15, 2854-2860.
    3 K. Gong, Y. H. Zeng and D. F. Kelley, J. Phys. Chem. C., 2013, 117, 20268-20279.
    4 P. R. Yu, M. C. Beard, R. J. Ellingson, S. Ferrere, C. Curtis, J. Drexler, F. Luiszer and A. J. Nozik,
    J. Phys. Chem. B., 2005, 109, 7084-7087.
    5
    M. C. Weidman, M. E. Beck, R. S. Hoffman, F. Prins and W. A. Tisdale, ACS Nano., 2014, 8, 6363-
    6371.
    6 I. Moreels, K. Lambert, D. D. Muynck, F. Vanhaecke, D. Poelman, J. C. Martins, G. Allan and Z.
    Hens, Chem. Mater., 2007, 19, 6101-6106.
    7 X. Zhong, M. Han, Z. Dong, T. J. White and W. Knoll, J. Am. Chem. Soc., 2003, 125, 8589-8594.
    8 J. Y. Ouyang, M. Vincent, D. Kingston, P. Descours, T. Boivineau, M. B. Zaman, X. H. Wu and K.
    Yu, J. Phys. Chem. C., 2009, 113, 5193-5200.
    9 J. Y. Ouyang, J. A. Ripmeester, X. H. Wu, D. Kingston, K. Yu, A. G. Joly and W. Chen, J. Phys.
    Chem. C., 2007, 111, 16261-16266.
    10 J. Y. Ouyang, C. I. Ratcliffe, D. Kingston, B. Wilkinson, J. Kuijper, X. H. Wu, J. A. Ripmeester and
    K. Yu, J. Phys. Chem. C., 2008, 112, 4908-4919.
    11 X. H. Zhong, Y. Y. Feng, W. Knoll and M. Y. Han, J. Am. Chem. Soc., 2003, 125, 13559-13563.
    12 Z. Deng, H. Yan and Y. Liu, J. Am. Chem. Soc., 2009, 131, 17744-17745.
    13 F. Z. Yang, Z. C. Xu, J. J. Wang, F. Zan, C. Q. Dong and J. C. Ren, Luminescence., 2013, 28, 392-
    400.
    14 B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen
    and M. G. Bawendi, J. Phys. Chem. B., 1997, 101, 9463-9475.
    15 Y. F. Chen, J. Vela, H. Htoon, J. C. Casson, D. J. Wender, D. A. Bussian, V. I. Kimov and J. A.
    Hollingsworth, J. Am. Chem. Soc., 2008, 130, 5026-5027.
    16 D. V. Talapin, I. Mekis, S. Gotzinger, A. Kornowski, O. Benson and H. Weller, J. Phys. Chem. B., 2004, 108, 18826-18831.
    17
    P. Reiss, M. Protiere and L. Li, small., 2009, 5, 154-168.
    18 X. G. Peng, M. C. Schlamp, A. V. Kadavanich and A. P. Alivisatos, J. Am. Chem. Soc., 1997, 119,
    7019-7029.
    19 J. M. Pietryga, D. J. Werder, D. J. Williams, J. L. Casson, R. D. Schaller, V. I. Klimov and J. A.
    Hollingsworth, J. Am. Chem. Soc., 2008, 130, 4879-4885.
    20 S. Haubold, M. Haase, A. Kornowski and H. Weller, Chem. Phys. Chem., 2001, 2, 331-334.
    21 H. Borchert, D. V. Talapin, N. Gaponik, C. McGinley, S. Adam, A. Lobo, T. Moller and H. Weller,
    J. Phys. Chem. B., 2003, 107, 9662-9668.
    22 H. H. Wei, C. M. Evans, B. D. Swartz, A. J. Neukirch, J. Young, O. V. Prezhdo and T. D. Krauss,
    Nano Lett., 2012, 12, 4465-4471.
    23 U. Winkler, D. Eich, Z. H. Chen, R. Fink, S. K. Kulkarni and E. Umbach, Phys. Status. Solidi.,
    1999, 173, 253-259.
    24 A. Veamatahau, B. Jiang, T. Seifert, S. Makuta, K. Latham, M. Kanehara, T. Teranishi and Y.
    Tachibana, Phys. Chem. Chem. Phys., 2015, 17, 2850-2858.
    25 L. Weinhardt, M. Bar, H. J. Muffler, C. H. Fischer, M. C. Lux-Steiner, T. P. Niesen, F. Karg, T.
    Gleim, C. Heske and E. Umbach, Thin Solid Films., 2003, 431-432, 272-276.
    26 D. D. Sarma, A. Nag, P. K. Santra, A. Kumar, S. Sapra and P. Mahadevan, J. Phys. Chem.
    Lett., 2010, 1, 2149-2153.
    27 M. Danilson, M. Altosaar, M. Kauk, A. Katerski, J. Krustok, J. Raudoja, Thin Solid Films., 2011,
    519, 7407-7411.
    28 X. Y. Wang, L. H. Qu, J. Y. Zhang, X. G. Peng and M. Xiao, Nano Lett., 2003, 3, 1103-1106.
    29 J. M. Zhang and X. Zhang, J. Phys. Chem. C., 2009, 113, 9512-9515.
    30 M. Grabolle, M. Spieles, V. Lesnyak, N. Gaponik, A. Eychmuller and U. Resch-Genger, Anal.
    Chem., 2009, 81, 6285-6294.
    31 C. Wurth, M. Grabolle, J. Pauli, M. Spieles and U. Resch-Genger, Nat. Protoc., 2013, 8, 1535-1550.
    32 A. Sillen and Y. Engelborghs, Photochem. Photobiol., 1998, 67, 475-486.
    33 D. F. Eaton, Pure Appl. Chem., 1990, 62, 1631-1648.
    34 A practical guide to time-resolved luminescence lifetime determination using dedicated Time-
    Correlated Single-Photon Counting systems. HORIBA Jobin Yvon IBH Ltd, Glasgow, Scotland, UK.
    35 J. Zhang, X. Zhang and J. Y. Zhang, J. Phys. Chem. C., 2009, 113, 9512-9515.
    36 A. R. Denton and N. W. Ashcroft, Phys. Rev A., 1991, 43, 3161-3164.
    37 K. H. Lee, J. H. Lee, H. D. Kang, B. Park, Y. W. Kwon, H. J. Ko, C. H. Lee, J. Y. Lee and H. S.
    Yang, ACS Nano., 2014, 8, 4893-4901.
    38 J. S. Cho, Y. K. Jung and J. K. Lee, J. Mater. Chem., 2012, 22, 10827-10833.
    39 W. S. Song, H. S. Lee, J. C. Lee, D. S. Jang, Y. Y. Choi, M. G. Choi and H. E. Yang, J. Nanoparticle
    Res., 2013, 15, 1750-1759.
    40 W. K. Bae, M. K. Nam, K. H. Char and S. H. Lee, Chem. Mater., 2008, 20, 5307-5313.
    41
    X. G. Peng, L. Manna, W. D. Yang, J. Wickham, E. Scher and A. Kadavanich. Nature., 2000, 404,
    59-61.
    42 D. V. Talapin, A. L. Rogach, A. Kornowski, M. Haase and H. Weller, Nano Lett., 2001, 1, 207-211.
    43 C. M. Donega, P. Liljeroth and D. Vanmaekelbergh, Small., 2005, 1, 1152-1162.
    44 J. J. Li, A. Wang, W. Z. Guo, J. C. Keay, T. D. Mishima, M. B. Johnson and X. G. Peng, J. Am.
    Chem. Soc., 2003, 125, 12567-12575.
    45 J. H. Lim, W. K. Bae, J. H. Kwak, S. H. Lee, C. H. Lee and K. H. Char, Opt. Mater. Express., 2012,
    2, 594-628.
    46 J. N. Demas. Excited-State Lifetime Measurements, Academic Press, New York, 1983.
    47 P. P. Favero, M. Souza-Parise, J. L. R. Fernandez and R. Miotto, Braz. J. Phys., 2006, 36, 1032-
    1034.
    48
    J. Jasieniak and P. Mulvaney, J. Am. Chem. Soc., 2007, 129, 2841-2848.
    49
    T. H. Gfroerer, Encyclopedia of Analytical Chemistry, 2006.
    50 M. Jones, S. S. Lo and G. D. Scholes, Proc. Natl. Acad. Sci. U.S.A., 2009, 106, 3011-3016.
    51 S. Hohng and T. Ha, J. Am. Chem. Soc., 2004, 126, 1324-1325.
    52 S. Jeong, M. Achermann, J. Nanda, S. Ivanov, V. I. Klimov and J. A. Hollingsworth, J. Am. Chem.
    Soc., 2005, 127, 10126-10127.
    53 A. Y. Nazzal, X. Y. Wang, L. H. Qu, W. Yu, Y. J. Wang, X. G. Peng and M. Xiao, J. Phys. Chem.
    B., 2004, 108, 5507-5515.
    54 J. Aldana, A. Wang, X. G. Peng, J. Am. Chem. Soc., 2001, 123, 8844-8850.
    55 C. H. Gao, X. J. Ma, Y. Zhang, F. X. Yi, Z. Y. Xiong, Z. Q. Wang, R. Wang, Y. L. Jia, D. Y. Zhou
    and Z. H. Xiong, RSC Adv., 2018, 8, 15698-15702.
    56 Y. A. Yang, H. M. Wu, K. R. Williams and Y. C. Cao, Angew. Chem., 2005, 117, 6870-6873.
    57 F. Du, H. Zhang, X. Du, J. Zhu and X. Zhong, Mater. Chem. Phys., 2010, 121, 118-124.
    58 E. Groeneveld, L. Wittemean, M. Lefferts, X. Ke, S. Bals, G. V. Tendeloo and C. M. Donega, ACS
    Nano., 2013, 7, 7913-7930.
    59 M. Green, J. Mater. Chem., 2010, 20, 5797-5809.
    60 Q. J. Sun, L. S. Li, D. Y. Wang, T. Zhu, J. Xu, C. H. Yang and Y. F. Li, Nat. Photonics., 2007, 1,
    717-722.
    61 J. Lim, B. G. Jeong, M. Park, K. Kim, J. M. Pietryga, Y. S. Park, V. I. Klimov, C. Lee, D. C. Lee
    and W. K. Bae, Adv. Mater., 2014, 26, 8034-8040.
    62 J. Lee, V. C. Sundar, J. R. Heine, M. G. Bawendi and K. F. Jensen, Adv. Mater., 2000, 12, 1102-
    1105.
    63 R. Xie, U. Kolb, J. Li, T. Basche and A. Mews, J. Am. Chem. Soc., 2005, 127, 7480-7488.
    64 U. Banin, M. Bruchez, A. P. Alivisatos, T. Ha, S. Weiss and D. S. Chemla, J. Chem. Phys., 1999,
    110, 1195-1201.
    65 D. Valerini, A. Creti, M. Lomascolo, L. Manna, R. Cingolani and M. Anni, Phys. Rev. B., 2005, 71,
    235409-235414.
    66 G. Morello, M. D. Giorgi, S. Kudera, L. Manna, R. Cingolani and M. Anni, J. Phys. Chem.
    C., 2007, 111, 5846-5849.
    67 P. Jing, J. Zheng, M. Ikezawa, X. Liu, S. Lv, X. Kong, J. Zha and Y. Masumoto, J. Phys. Chem.
    C., 2009, 113, 13545-13550.
    68 Y. H. Niu, A. M. Munro, Y. J. Cheng, Y. Tian, M. S. Liu, J. Zhao, J. A. Bardecker, J. L. Plante, D.
    S. Ginger and A. K. Jen, Adv. Mater., 2007, 19, 3371-3376.
    69 K. S. Cho, E. K. Lee, W. J. Joo, E. Jang, T. H. Kim, S. J. Lee, S. J. Kwon, J. Y. Han, B. K. Kim, B.
    L. Choi and J. M. Kim, Nat. Photonics., 2009, 3, 341-345.
    70 M. Seyhan, W. Kucharczyk, U. E. Yayar, D. Rende, N. Baysal, S. Bucak and R. Ozisik, Nanotechnol.
    Sci. Appl., 2017, 10, 69-77.
    71 Chemical product and company identification of 1-dodecanethiol. Santa Cruz Biotechnology, Inc.
    72 S. Tarimala, N. Kothari, N. Abidi, E. Hequet and J. Fralick. J. Appl. Polym. Sci., 2006, 101, 2938-
    2943.
    73 J. Cho, Y. K. Jung and J. K. Lee, J. Mater. Chem., 2012, 22, 10827-10833.
    74 W. K. Bae, J. Kwak, J. Lim, D. Lee, M. K. Nam, K. Char, C. Lee and S. Lee, Nano Lett., 2010, 10,
    2368-2373.
    75 Z. Li, Y. Ji, R. Xie, S. Y. Grisham and X. Peng, J. Am. Chem. Soc., 2011, 133, 17248-17256.
    76 M. R. McPhail and E. A. Weiss, Chem. Mater., 2014, 26, 3377-3384.
    77 W. K. Bae, M. K. Nam, K. Char, S. Lee, Chem. Mater., 2008, 20, 5307-5313.
    78 S. Chen and W. Liu, Mater. Chem. Phys., 2006, 98, 183-189.
    79 S. Kim, S. H. Im, M. Kang, J. H. Heo, S. Seok, S. W. Kim, I. Mora-Sero and J. Bisquert, Phys.
    Chem. Chem. Phys., 2012, 14, 14999-15002.
    80 L. Zhang, R. He and H. C. Gu, Appl. Surf. Sci., 2006, 253, 2611-2617.
    81 D. Xu, Z. Liu, J. Liang, Y. Qian, J. Phys. Chem. B., 2005, 109, 14344-14349.
    82 K. H. Lee, J. H. Lee, W. S. Song, H. Ko, C. Lee, J. H. Lee and H. Yang, ACS Nano, 2013, 7, 7295-
    7302.
    83 D. W. Langer and C. J. Vesely, Phys. Rev. B., 1971, 4, 451-462.
    84 L. S. Dake, D. R. Baer and J. M. Zachara, Surf. Interface Anal., 1989, 14, 71-75.
    85 E. Agostinelli, C. Battistoni, D. Fiorani, G. Mattogno and M. Nogues, J. Phys. Chem. Solids., 1989, 50, 269-272.
    86 R. V. Siriwardane and J. A. Poston, Appl. Surf. Sci., 1990, 45, 131-139.
    87 T. R. N.Kutty, Mater. Res. Bull., 1991, 26, 399-406.

    QR CODE