簡易檢索 / 詳目顯示

研究生: 曾群凱
Tseng, Chun-Kai
論文名稱: Temperature-Aware Leakage Power Modeling for Integrated Circuits and Its Application to Power-Thermal Co-Simulation
具有溫度感知能力之積體電路靜態功率模型建立方法及其在功率與溫度共同模擬上之應用
指導教授: 黃錫瑜
Huang, Shi-Yu
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 99
語文別: 英文
論文頁數: 41
中文關鍵詞: 靜態功率模型靜態功率評估標準原件庫靜態隨機存取記憶體產生器
外文關鍵詞: Leakage Power Modeling, Leakage Power Estimation, Standard Cell Library, SRAM Compiler
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • In this paper, we present an automatic leakage power modeling method for standard cell library as well as SRAM compiler and further use these models to build a power-thermal co-simulation framework. For the modeling problem, there are two major challenges – (1) the high sensitivity of leakage power to the temperature (e.g., the leakage power of an inverter can be different by 19.28X when temperature rises from 25°C to 100°C in 90nm technology), and (2) the large number of models to be built (e.g., there could be 80,835 SRAM macros supported by an SRAM compiler). Our method achieves high accuracy efficiently by two formula-based prediction techniques. First of all, we incorporate a quick segmented exponential interpolation scheme to take into account the effects of the temperature. Secondly, we use a MUX-oriented linear extrapolation scheme, which is so accurate that it allows us to build the leakage power models for all SRAM macros based on linear regression using only the simulation results of 9 small-sized SRAM macros. Experimental results show that this method is not only accurate but also highly efficient. Applying these temperature-aware leakage models into our power-thermal co-simulation framework also reveals that for some in-house design the leakage power could be up to 8.14X different from the one estimated without thermal consideration.


    在這篇論文裡面,我們針對標準原件庫(Standard Cell Library)及靜態隨機存取記憶體產生器(SRAM Compiler)提出了一個自動化靜態功率模型建立方法,並且我們應用此模型建立功率與溫度功共同模擬平台。在建立模型的過程中,我們將會面臨兩個主要的挑戰 – (1) 靜態功率對於溫度的高敏感性( e.g., 根據實驗結果,一個在90奈米製程下自行建立的反相器,操作溫度從25°C 上升至100°C,其靜態功率成長19.28倍) 和(2) 模型數量過多 ( e.g., 一個靜態隨機存取記憶體產生器總共可產生 80,835 種不同大小的靜機存取記態記憶體)。我們的方法藉由搭配使用兩種以方程式為基礎的預測技術來同時達到預估的高準確度及執行的高效率,首先我們使用快速的分段指數內插( Segmented Exponential Interpolation)方法考慮溫度對靜態功率的影響,除此之外,我們利用多工器導向的線性外插 ( Mux-oriented Linear Extrapolation)方法建立靜態隨機存取記憶體其高準確度的靜態功率模型,此模型是根據九個小尺寸靜態隨機存取記憶體的模擬結果執行線性迴歸所產生,可對所有靜態隨機存取記憶體產生器所能產生的靜態隨機存取記憶體進行功率評估,根據實驗結果,此方法不僅準確度高且十分有效率。我們實際應用這些具有溫度感知能力的模型到功率與溫度共同模擬平台中,在考慮溫度和靜態功率的交互影響下,一個自行設計的晶片其靜態功率會是在無考慮情況下的8.14倍。

    Abstract i 摘要 ii Content iii List of Figures v List of Tables vii Chapter 1 Introduction 1 1.1 Introduction 1 1.2 Thesis Organization 5 Chapter 2 Leakage Power Model of A Standard Cell Library 6 2.1 Temperature-Aware Leakage Power Modeling 6 2.2 Temperature-Dependent Characteristic Formula 7 Chapter 3 Leakage Power Model of An SRAM Compiler 10 3.1 Basic Idea 10 3.2 Characteristic Formula for SRAM Compiler 11 3.2.1 Mux-Oriented Power Model 11 3.2.2 Segmented Exponential Model for SRAM Macros 13 3.2.3 Deriving Leakage Power of a Memory Macro 14 Chapter 4 Power-Thermal Co-Simulation 19 4.1 Thermal Characteristics 19 4.2 Compact Thermal Model 20 4.3 Interaction of Leakage Power and Temperature 22 4.4 Power-Thermal Co-Simulation Mechanism 25 Chapter 5 Experimental Results 28 5.1 Modeling Accuracy of Basic Cells 28 5.2 Modeling Accuracy of SRAM Macros 29 5.3 Modeling Time 30 5.4 Temperature-Aware Power Estimation 31 5.5 Power-Thermal Co-Simulation Results 33 Chapter 6 Conclusion 37 Bibliography 38

    [1] Z.-P. Chen, M. Johnson, L.-Q. Wei, and W. Roy, "Estimation of Standby Leakage Power in CMOS Circuit Considering Accurate Modeling of Transistor Stacks," Proc. of Int’l Symp. on Low Power Electronics and Design, pp. 239- 244, Aug 1998.
    [2] A. S. Grov, “Changing Vetors of Moore’s Law - Keynote Speech,” Int’l Electron Devices Meeting, Dec. 2002.
    [3] A. Gupta, N. Dutt, F. J. Kurdahi, K. S. Khouri, and M. S. Abadir, "STEFAL: A System Level Temperature - and Floorplan-Aware Leakage Power Estimator for SoCs," Proc. of VLSI Design, pp.559-564, Jan. 2007.
    [4] L. He, W. Liao, and M. R. Stan, "System Level Leakage Reduction Considering the Interdependence of Temperature and Leakage," Proc. of Design Automation Conference, pp. 12- 17, 2004.
    [5] R. Kumar and C. P. Ravikumar, "Leakage Power Estimation for Deep Submicron Circuits in an ASIC Design Environment," Proc. of Asian and South Pacific Design Automation, pp.45-50, 2002.
    [6] W. Liao, F. Li, and L. He, "Microarchitecture Level Power and Thermal Simulation Considering Temperature Dependent Leakage Model," Proc.of Low Power Electronics and Design, pp. 211- 216, Aug. 2003.
    [7] Y.-S. Lin, and D. Sylvester, "Runtime Leakage Power Estimation Technique for Combinational Circuits," Proc. of Asian and South Pacific Design Automation, pp.660-665, Jan. 2007.
    [8] Y.-P. Liu, R. P. Dick, S. Li, and H.-Z. Yang, "Accurate Temperature-Dependent Integrated Circuit Leakage Power Estimation is Easy," Proc. of Design, Automation, and Test in Europe Conference, pp.1-6, April 2007.
    [9] H. Su, F. Liu, A. Devgan, E. Acar, and S. Nassif, "Full Chip Leakage-Estimation Considering Power Supply and Temperature Variations," Proc. of Low Power Electronics and Design, pp. 78- 83, Aug. 2003.
    [10] J. Viraraghavan, B. P. Das, and B. Amrutur, "Voltage and Temperature Scalable Standard Cell Leakage Models Based on Stacks for Statistical Leakage Characterization," Proc. of 21st Int’l Conf. on VLSI Design, pp.667-672, Jan. 2008.
    [11] Y. Zhang, D. Parikh, K. Sankaranarayanan, K. Skadron, and M. Stan, “Hotleakage: A Temperature-Aware Model of Subthreshold and Gate Leakage for Architects,” Technical Report TR-CS-2003-05, Univ. of Virginia, Dept. of Computer Science, Mar. 2003.
    [12] P. Zhou, Y. Ma, Q. Zhou, and X. Hong, "Thermal Effects with Leakage Power Considered in 2D/3D Floorplanning," Proc. of Computer-Aided Design and Computer Graphics, pp.338-343, Oct. 2007.
    [13] Intel Corp. http://software.intel.com/en-us/articles/gigascale-integration-challenges-and-opportunities.
    [14] “Artisan Standard Library SRAM Generator User Manual,” Artisan Components, 2004.
    [15] “CIC Referenced Flow for Cell-based IC Design”, Chip Implementation Center, CIC, Taiwan, Document no. CIC-DSD-RD-08-01, 2008.
    [16] W. Huang, M. R. Stan, K. Skadron, K. Sankaranarayanan, S. Ghosh, and S. Velusamy, "Compact thermal modeling for Temperature-Aware Design," Proc. of Design Automation Conference, pp. 878- 883, 2004.
    [17] W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K. Skadron, and M. R. Stan, "HotSpot: a Compact Thermal Modeling Methodology for Early-Stage VLSI design," IEEE Trans. on Very Large Scale Integration (VLSI) Systems, pp. 501- 513, May 2006.
    [18] P.-Y. Huang, and Y.-M. Lee, "Full-Chip Thermal Analysis for the Early Design Stage via Generalized Integral Transforms," IEEE Trans. on Very Large Scale Integration (VLSI) Systems, pp.613-626, May 2009.
    [19] K. Skadron, T. Abdelzaher, and M.R. Stan, "Control-Theoretic Techniques and Thermal-RC Modeling for Accurate and Localized Dynamic Thermal Management," Proc. of Int’l Symposium on High-Performance Computer Architecture, pp. 17- 28, Feb. 2002.
    [20] J. Parry, H. Rosten, G.B. Kromann, "The Development of Component-Level Thermal Compact Models of a C4/CBGA Interconnect Technology: the Motorola PowerPC 603 and PowerPC 604 RISC Microprocessors," IEEE Trans. on Components, Packaging, and Manufacturing Technology, pp.104-112, Mar 1998.
    [21] S. Mercier, L. Gonthier, "Thermal Runaway Evaluation for New High-Temperature Triacs in Steady-State Operation," Proc. of Power Electronics and Applications, pp.1-9, Sept. 2009.
    [22] Y.-Y. Chen and S.-Y. Huang, "Rapid and Accurate Timing Modeling for SRAM Compiler," Proc. of IEEE Int'l Workshop on Memory Technology, Design, and Testing, pp. 73-76, Nov. 2009.
    [23] TinnoTek Inc., "PowerMixer tutorial", and "PowerBrick tutorial", http://www.tinnotek.com.tw

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE