研究生: |
范瑞廷 Jui-Ting Fan |
---|---|
論文名稱: |
連續型平板散熱片在不等根部溫度條件下二維散熱片效率之數值模擬 numerical simulation of two-dimensional fin efficiency in joined fin with inline tubes |
指導教授: |
陳理定
Li-Ting Chen |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2002 |
畢業學年度: | 90 |
語文別: | 中文 |
論文頁數: | 60 |
中文關鍵詞: | 散熱片 、延伸面 、散熱片效率 、排列式 、數值 、模擬 |
外文關鍵詞: | fin, extend surface, fin efficiency, inline, numerical, simulation |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究之主題是針對廣泛使用於熱交換器之連續型平板散熱片。在熱交換器中,熱傳管的溫度隨著冷媒之流動而有變化,也造成了散熱片中不等根部溫度之條件。在不等根部溫度條件下,散熱片之溫度不僅僅受到外界空氣之影響,散熱片中之不等根部溫度也造成散熱片溫度分布的改變。
本文採用數值分析之中央差分法模擬散熱片在不等根部溫度條件下,不同熱對流係數與熱傳導係數下、散熱片尺寸、厚度等之二維溫度分布,並利用其溫度分布計算散熱片之平均散熱片效率。藉此以比較過去廣為被使用來估算散熱片之Schmidt法之差異。
其結果顯示,以Schmidt法來估計一連續型散熱片之散熱片效率,與實際之連續型平板散熱片溫度分布所計算之平均散熱片效率當在散熱片之等效半徑與熱傳管半徑比值大時兩種方式所計算之散熱片效率有極大之差異。此外,本研究並模擬當空氣進入熱交換器後,空氣與散熱片熱交換造成空氣溫度變化而影響散熱片之溫度分布等狀況,藉此探討散熱片採用逆向流與平行流排列所造成冷卻能力之差異。
The aim of my thesis is to study the temperature distribution and fin efficiency of the joined-fin whose tubes arranged inline. When the coolant running in a heat exchanger, the tubes in the same sheet of fin have different temperatures. Consequently, it causes the condition of different base (tube) temperatures in one sheet of fin. In this condition, the temperature distribution of the fin is influenced by the ambient temperature and different tubes temperatures.
The finite difference approximation was used to simulate the two-dimensional temperature distribution and to calculate mean fin efficiency under the different tubes temperatures condition. The simulation results were then compared with the Schmidt method, which is widely used to calculate the fin efficiency.
The result reveals that there is difference between Schmidt method and the method presented in the study when the equivalent radius over the radius of the tube is bigger. Besides, when air passed through the heat exchanger, the airflow heat exchanged with the extend surface, and it also caused the change of air temperature. In addition, the changes of the air temperature in the procedure were shown in the other simulation. The effects of the coolant running in parallel flow and counter flow were discussed.
1. Alan J. Chapman “Fundamentals of Heat Transfer” chapter 4, pp.159-207, Macmillan Publishing Company, New York.
2. Haper, D. R. and Brown, W. B., “Mathematical Equations for Heat Conduction in the Fins of Air cooled Engines,” N. A. C. A. Rept, pp. 158, 1922.
3. Gardner, K. A., “Efficiency of Extend Surface,” Teans. ASME, Vol. 67, pp. 621-631. 1945.
4. Schmidt, Th. E., “Heat transfer calculations for extended surfaces,” Refrigerating Engineering, pp. 351-357. 1949.
5. H. Zabronsky, “ Efficiency of a Heat Exchanger Using Square Fins on Round Tubes,” Carbide and Carbon Chemical Company, K-25 Plant Oak Ridge, Tennessee. August 15,1952.
6. E. C. Rosman, P. Carajilescov and F. E. M. Saboya, “Performance of One- and Two- Row Tube and Plate Fin Heat Exchangers,” Journal of Heat Transfer, Vol. 106 pp.627-632, August 1984.
7. L. T. Chen, “ Two- dimension Fin Efficiency with Combined Heat and Mass Transfer between Water-wetted Fin surface and Moving moist Air Stream,” Int. J. Heat Fluid Flow, Vol. 12, No. 1, pp. 71-76, March 1991.
8. Abhay Vardhan and P. Dhar, “A New Procedure for Predicition of Air Conditions Coils,” Int. J. Refrig. Vol. 21 No. 1 pp. 71-83, 1998.
9. D. Besednjak and A. Poredos, “ Efficiency of cooled extend surface,” Int. J. Refrig. Vol. 21 No. 5 pp. 372-380, 1998.
10. Luca Buzzoni, Roberto Dall’Olio, Macro spiga, “ Efficiency of the Unit Cell in Rectangular Finned Tube Arrangement,” Applied Thermal Engineering, Vol. 19, Issue: 11, November 1999, pp. 1147-1156.
11. S. Y. Liang, T. N. Wong, G. K. Nathan, “Comparison of one dimensional models for wet-surface fin efficiency of a plate-fin-tube heat exchanger,” Applied Thermal Engineering, Vol. 20, Issue: 10, July 1, 2000, pp. 941-962.
12. Glen E. Mters, “Analytical Methods in Conduction Heat Transfer,” chapter 2
13. 王啟川, “熱交換器設計,” 五南圖書出版有限公司。