研究生: |
林寬貿 Kuan-Mao Lin |
---|---|
論文名稱: |
皺波生成系統上缺陷起源之研究 Study of Defect Origin on Wrinkle Formation System |
指導教授: |
蔡哲正
Cho-Jen Tsai |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 88 |
中文關鍵詞: | 皺波結構 、類差排缺陷 、應變釋放速率 |
外文關鍵詞: | wrinkle structure, dislocation-like defect, strain release rate |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗以聚二甲基矽氧烷(PDMS)作為彈性基材,利用自製夾具預先施加5%單軸向拉伸應變後在表面沉積矽薄膜,隨後釋放應變並使用步進馬達控制釋放速率。我們藉由原子力顯微鏡(AFM)及光學顯微鏡(OM)來觀察試片表面的皺波結構;由OM觀察發現皺波結構上會出現裂縫及類差排兩種型態的缺陷,本實驗將著重在探討不同參數對皺波結構上類差排密度的影響,我們藉由OM影像圖來統計單位面積內類差排的數量。
實驗發現類差排密度會隨應變釋放速率增加而增加,較厚的鍍矽層能降低應變釋放速率所帶來的影響而使類差排密度約略維持定值;實驗也顯示類差排密度會隨鍍矽層厚度增加而減少。本實驗也嘗試將PDMS旋轉塗佈在不同基板上,實驗顯示塗佈在矽晶圓上所製備的PDMS其類差排密度會低於塗佈在聚酯膜上所得到的PDMS。在兩階段應變釋放實驗中,我們觀察到類差排密度僅與初期應變釋放速率有關;而對試片施予循環拉伸及釋放應變也顯示類差排密度不會有大幅度的變動。
1. U. Valbusa, C. Boragno, and F.B. de Mongeot, J. Phys.: Condens Matter 14, 8153 (2002).
2. A.F. Miller, Science 317, 605 (2007).
3. M.W. Moon, S.H. Lee, J.Y. Sun, K.H. Oh, A. Vaziri, and J.W. Hutchinson, Proceedings of the National Academy of Sciences of the United States of America 104, 1130 (2007).
4. H.M. van Driel, J.E. Sipe, and J.F. Young, Phys. Rev. Lett. 49, 1955 (1982).
5. Y.F. Lu, W.K. Choi, Y. Aoyagi, A. Kinomura, and K. Fujii, J. Appl. Phys. 80, 7052 (1996).
6. F. Iacopi, S.H. Brongersma, and K. Maex, Appl. Phys. Lett. 82, 1380 (2003).
7. S.J. Kwon, J.G. Park, and S.H. Lee, J. Chem. Phys. 122, 031101 (2005).
8. W.X. Qian, X.H. Yu, X.J. Quan, and R.C. Han, J. Chem. Phys. 126, 064901 (2007).
9. A.L. Volynskii, S. Bazhenov, O.V. Lebedeva, and N.F. Bakeev, J. Mater. Sci. 35, 547 (2000).
10. J. Groenewold, Physica A 298, 32 (2001).
11. E. Cerda, K. Ravi-Chandar, and L. Mahadevan, Nature 419, 579 (2002).
12. E. Cerda and L. Mahadevan, Phys. Rev. Lett. 90, 074302 (2003).
13. N. Bowden, W.T.S. Huck, K.E. Paul, and G.M. Whitesides, Appl. Phys. Lett. 75, 2557 (1999).
14. N. Bowden, S. Brittain, A.G. Evans, J.W. Hutchinson, and G.M. Whitesides, Nature 393, 146 (1998).
15. Diana B.H. Chua, H.T. Ng, and S.F.Y. Li, Appl. Phys. Lett. 76, 721 (2000).
16. G.C. Martin, T.T. Su, I.H. Loh, E. Balizer, S.T. Kowel, and P. Kornreich, J. Appl. Phys. 53, 797 (1982).
17. X. Chen and J.W. Hutchinson, J. Appl. Mech. 71, 597 (2004).
18. X. Chen and J.W. Hutchinson, Scr. Mater. 50, 797 (2004).
19. P.C. Lin and S. Yang, Appl. Phys. Lett. 90, 241903 (2007).
20. W.T.S. Huck, N. Bowden, P. Onck, T. Pardoen, J.W. Hutchinson, and G.M. Whitesides, Langmuir 16, 3497 (2000).
21. T. Ohzono, S.I. Matsushita, and M. Shimomura, Soft Matter 1, 227 (2005).
22. T. Ohzono and M. Shimomura, Colloids Sur., A 284, 505 (2006).
23. T. Ohzono and M. Shimomura, Phys. Rev. B 69, 132202 (2004)
24. T. Ohzono and M. Shimomura, Langmuir 21, 7230 (2005).
25. T. Ohzono and M. Shimomura, Phys. Rev. E 73, 040601 (2006).
26. T. Ohzono and M. Shimomura, Phys. Rev. E 72, 025203 (2005).
27. T. Ohzono and M. Shimomura, Jpn. J. Appl. Phys., Part 1 44, 1055 (2005).
28. K. Efimenko, M. Rackaitis, E. Manias, A. Vaziri, L. Mahadevan, and J. Genzer, Nat. Mater. 4, 293 (2005).
29. R. Huang and Z. Suo, J. Appl. Phys. 91, 1135 (2002).
30. R. Huang and Z. Suo, Thin Solid Films 429, 273 (2003).
31. Z. Huang, W. Hong, and Z. Suo, Phys. Rev. E 70, 030601 (2004).
32. Z.Y. Huang, W. Hong, and Z. Suo, J. Mech. Phys. Solids 53, 2101 (2005).
33. R. Huang and S.H. Im, Phys. Rev. E 74, 026214 (2006).
34. P.J. Yoo, K.Y. Suh, S.Y. Park, and H.H. Lee, Adv. Mater. 14, 1383 (2002).
35. P.J. Yoo, S.Y. Park, S.J. Kwon, K.Y. Suh, and H.H. Lee, Appl. Phys. Lett. 83, 4444 (2003).
36. S.J. Kwon, P.J. Yoo, and H.H. Lee, Appl. Phys. Lett. 84, 4487 (2004).
37. P.J. Yoo and H.H. Lee, Phys. Rev. Lett. 91, 154502 (2003).
38. P.J. Yoo, K.Y. Suh, H. Kang, and H.H. Lee, Phys. Rev. Lett. 93, 034301 (2004).
39. P.J. Yoo and H.H. Lee, Macromolecules 38, 2820 (2005).
40. T. Okayasu, H.L. Zhang, D.G. Bucknall, and G.A.D. Briggs, Adv. Funct. Mater. 14, 1081 (2004).
41. H. Vandeparre, J. Le'opolde's, C. Poulard, S. Desprez, G. Derue, C. Gay, and P. Damman, Phys. Rev. Lett. 99, 188302 (2007).
42. C. Harrison, C.M. Stafford, W. Zhang, and A. Karim, Appl. Phys. Lett. 85, 4016 (2004).
43. S.P. Lacour, S. Wagner, Z. Huang, and Z. Suo, Appl. Phys. Lett., 82, 2404 (2003).
44. S.P. Lacour, J. Jones, Z. Suo, and S. Wagner, IEEE Electron Device Lett. 25, 179 (2004).
45. S. Wagner, S.P. Lacour, J. Jones, P.H.I. Hsu, J.C. Sturm, T. Li, and Z. Suo, Physica E 25, 326 (2004).
46. M. Watanabe, H. Shirai, and T. Hirai, J. Appl. Phys. 92, 4631 (2002).
47. D.Y. Khang, H.Q. Jiang, Y. Huang, J.A. Rogers, Science 311, 208 (2006).
48. C.M. Stafford, C. Harrison, K.L. Beers, A. Karim, E.J. Amis, M.R. Vanlandingham, H.C. Kim, W. Volksen, R.D. Miller, and E.E. simonyi, Nat. Mater. 3, 545 (2004).
49. C.M. Stafford, S. Guo, C. Harrison, and M.Y.M. Chiang, Rev. Sci. Instrum. 76, 062207 (2005).
50. A.J. Nolte, R.E. Cohen, and M.F. Rubner, Macromolecules 39, 4841 (2006).
51. C.M. Stafford, B.D. Vogt, C. Harrison, D. Julthongpiput, and R. Huang, Macromolecules 39, 5095 (2006).
52. R. Huang, C.M. Stafford, and B.D. Vogt, Journal of Aerospace Engineering 20, 38 (2007).
53. J.Y. Chung, J.P. Youngblood, and C.M. Stafford, Soft Matter 3, 1163 (2007).
54. J. Huang, M. Juszkiewicz, W.H. de Jeu, E. Cerda, T. Emrick, N. Menon, and T.P. Russell, Science 317, 650 (2007).
55. A.K. Harris, P. Wild, and D. Stopak, Science 208, 177 (1980).
56. R. Bernal, C. Tassius, F. Melo, and J.C. Ge'minard, Appl. Phys. Lett. 90, 063903 (2007).
57. A.I. Teixeira, G.A. Abrams, P.J. Bertics, C.J. Murphy, and P.F. Nealey, J. Cell Sci. 116, 1881 (2003).
58. L. Hoipkemeier-Wilson, J.F. Schumacher, M.L. Carman, A.L. Gibson, A.W. Feinberg, M.E. Callow, J.A. Finlay, J.A. Callow, and A.B. Brennan, Biofouling 20, 53(2004).
59. A.L. Volynskii, S. Bazhenov, O.V. Lebedeva, A.N. Ozerin, and N.F. Bakeev, J. Appl. Polym. Sci. 72, 1267 (1999).
60. S.L. Bazhenov, A.L. Volynskii, V.M. Alexandrov, and N.F. Bakeev, J. Polym. Sci., Part B: Polym. Phys. 40, 10 (2002).
61. 楊文華, 碩士論文, 淡江大學機械所, (1995)。