簡易檢索 / 詳目顯示

研究生: 梁中瑜
Liang, Chung-Yu
論文名稱: 高性能非晶矽薄膜電晶體元件製作及特性研究
The Fabrication and Characteristics Studies of High Performance Amorphous Thin-film Transistors
指導教授: 葉鳳生
Yeh, Fon-Shan
張鼎張
Chang, Ting-Chang
口試委員:
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 143
中文關鍵詞: 薄膜電晶體平面顯示器液晶顯示器
外文關鍵詞: Thin Film Transistor, flat panel display, LCD
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文首先提出一個新穎之非晶矽薄膜電晶體結構,藉由改善具蝕刻終止層架構之非晶矽薄膜電晶體而達到比傳統非晶矽薄膜電晶體低數倍的低漏光電流之特性。另外因為受到非晶矽通道蝕刻製程的影響,使得導通電流稍微降低,在本文中對於降低的導通電流,我們也提供了可能的解釋機制。即使導通電流些微降低,新結構整體的最高導通電流與最低漏電流的比值仍遠大於傳統的非晶矽電晶體,這項特點使得此結構可以廣泛應用於高解析度及高亮度的液晶顯示面板,而由於其超低漏電流特性使其更可以應用於X光感應器等應用。
    此外,我們將目前傳統雙閘極電晶體依據其特性不同歸類成兩種不同類型,歸類方式以上閘極 (透明電極)是否跨越汲極與源極為主,若將上閘極跨越汲極與源極歸類為A類,未跨越者為B類。A類雙閘電晶體的導通電流不太隨著上閘極透明電極的長度而變,且其漏電流遠大於單極電晶體以及B類電晶體,而B類電晶體則呈現與單極電晶體幾乎相同的漏電流,之所以如此可能是由於上閘極與汲極、源極間存在高阻抗區域使得電洞流不易在背通道傳導。在此我們亦發現A跟B類電晶體皆具有比傳統單極電晶體較低光漏電流的特性,我們在此也嘗試提供了一些解釋機制。由於傳統雙極電晶體雖然擁有高導通電流與低漏光電流特性,但是其所擁有較高的寄生電容(CGS)卻是一大缺點,較高寄生電容會使顯示面板呈現閃爍的效應(Flicker),在本文中也提供可能的寄生電容量測方法並利用模擬軟體來驗證量測方法的準確度。一種新型非對稱雙極電晶體在此提出用以解決傳統雙極電晶體的高寄生電容缺點,並且做成解析度160╳128, 114 dpi的高效能1.8吋面板用以與傳統面板比較差異性。
    隨著GOA(Gate driver on array)電路的流行,高密度、高W/L的非晶矽薄膜電晶體研究受到重視。傳統的直流(DC)量測方式無法顯示出實際上電晶體在交流(AC)驅動時的特性。在本論文中,我們使用一種新型暫態量測系統來量測暫態內電晶體電流的特性,成功的量得暫態電流,同時也發現元件密度越高,W/L越大,使用傳統量測誤差也會越大。
    非晶矽電晶體的穩定度一直是很重要的課題,在此簡單的提供常見的兩種機制來解釋臨界電壓的不穩定問題,並利用Stretched Exponential 模型來萃取一些重要元件的穩定度參數。另外利用研究非晶矽電容的正負偏壓穩定度測試來驗證缺陷在能帶上可能產生的位置,並驗證屬於懸吊鍵機制(defect creation)的缺陷產生是可逆的,可以藉由在大氣下加熱180℃後放置二十四小時候回復到電容初始狀況。本論文最後亦討論濕度與光對非晶矽元件的影響,相對濕度越高漏電流增加,為了驗證推測,我們利用雙極電晶體並在上閘極加了不同極性電壓,發現加正電壓後漏電效應與濕度增加的效應相同,故推測水分子在元件表面似乎扮演了正電荷的角色,能改變靠近背通道部分的能帶,使漏電增加。


    In this thesis, we have introduced a new ESSC-TFT structure, which exhibits lower leakage current than that of conventional ES-TFT structure under back light illumination and dark environments, respectively. Although the on-currents may slightly be degraded by the etching process, the on/off current ratio under back light illumination environment is still much larger than the one in the conventional ES-TFT structure. We also provide a possible mechanism and methodology for the worse on-currents of the ESSC-TFTs. Such a new TFT device will enable high-resolution and high-brightness LCDs for next-generation applications; besides, the characteristics of lower leakage under dark environment also make ESSC-TFT device a suitable candidate for X-ray image-sensor applications.
    Two types of dual-gate TFTs have shown the different electrical characteristics; the on-currents of type B TFTs are correlated to the lengths of ITO top gate. On the contrary, the type A devices nearly keep a certain quantity of on currents regardless of the size of ITO length. For the off state, the type A devices exhibit higher leakage currents than both type B devices and control samples, while the type B devices show almost the same leakage quantity with the control samples. This is due to the high impedance of intrinsic a-Si:H in the region between the ITO gate and source/drain contact. We also first observed that both type A and type B dual-gate TFTs show lower photo-leakage current than conventional TFTs and applied a proper mechanisms and explanation to this phenomenon. We also try to develop a measurement methodology to obtain the real TFT parasitic capacitance, and a simulation methodology is also introduced to verify our measurement results here. By using this measurement method, the conventional dual-gate TFTs are realized not suitable for LCD fabrication due to the inevitable increased CGS. The asymmetric dual-gate TFT is thereby introduced to overcome the shortcoming. High performance 1.8” asymmetric dual-gate TFT-LCDs with 114 dpi and 160×128 resolution are also demonstrated here.
    A transient measurement method to estimate the real performance of a a-Si:H TFT in a GOA (Gate driver on array) circuits has been described. The conventional DC measurement is insufficient to be used to describe the AC driving behaviors of a a-Si:H TFT due to the long DC measurement time can heat up the device and obtain the inaccurate results for circuit simulations. In this thesis, we also found that Larger channel width, shorter channel length, smaller device area and higher driving bias can also enhance the self-heating effect in a-Si:H TFTs by transient measurements.
    Two mechanisms of threshold voltage of the a-Si:H TFT metastability are introduced, and the stretched exponential model is used to extract the critical parameters of the defect creation. The point defect creation is proved to be reversible by the annealing process with a certain relaxation time by a series bias stress experiments tested on numbers of three-layer capacitors. The carrier trapping in insulator has also been observed with high voltage bias above 60V, which the capacitor cannot be recovered to its initial state. Furthermore, the humidity effect on a a-Si:H TFT has also been observed. The leakage current in a-Si:H TFTs increases exponentially and saturated at high relative humidity. This confirm that the leakage current in a-Si:H TFTs is strongly affected by the water molecules on the top passivation layer. The water molecules act as a positive charges as can be verified by the dual-gate a-Si:H TFT with various top gate biases. The leakage current of the a-Si:H TFTs with photo-illumination and humidity environment is also observed in this thesis.

    Contents Chinese Abstract-------------------------------------------------------------------------I English Abstract------------------------------------------------------------------------IV Acknowledgement--------------------------------------------------------------------VII Contents--------------------------------------------------------------------------------VIII Table Captions--------------------------------------------------------------------------XI Figure Captions------------------------------------------------------------------------XII Chapter 1 Introduction 1.1Generalbackground--------------------------------------------------------------1 1.1.1. TFT structures-------------------------------------------------------------2 1.1.2. The Inverted staggered bi-layer and tri-layer TFT Structures-----------3 1.2 The Physics of a-Si:H Thin Film Transistor---------------------------------------------5 1.2.1. Density of states--------------------------------------------------------------------5 1.2.2. Transfer characteristics -----------------------------------------------------------8 1.2.3. Output characteristics------------------------------------------------------------9 1.3 Instability issues----------------------------------------------------------------------------10 1.4 The objectives of this thesis-------------------------------------------------------------11 Chapter 2 Etch-stopper sidewall-contact amorphous silicon TFT 2.1 Introduction---------------------------------------------------------------------------------22 2.2 Device fabrication and structure-------------------------------------------------------23 2.3 Results and discussion--------------------------------------------------------------------24 2.3.1 The basic electrical characteristics and photo-leakage current--------24 2.3.2 Advanced electrical characterization-----------------------------------------25 2.4 Conclusion-----------------------------------------------------------------------------------30 Chapter 3 Asymmetric Dual-gate TFTs 3.1 The conventional dual-gate TFTs with ITO top gates----------------------------42 3.1.1 Introduction----------------------------------------------------------------------42 3.1.2. Device structures and fabrication------------------------------------------43 3.1.3. Results and discussion--------------------------------------------------------44 3.2. Asymmetric dual-gate TFT LCD------------------------------------------------------46 3.2.1. Feed-through voltage for dual-gate TFTs--------------------------------46 3.2.2. TFT parasitic capacitance measurement and simulation------------47 3.2.3. The characteristics of asymmetric TFT and panel performance---49 3.2.4. Asymmetric dual-gate TFT LCD performance--------------------------52 3.3. Conclusion-------------------------------------------------------------------------------52 Chapter 4 The Self-heating Behavior in a-Si:H TFTs 4.1. Introduction-----------------------------------------------------------------------------81 4.2. Transient measurement--------------------------------------------------------------82 4.3. The comparison and results---------------------------------------------------------83 4.4. Conclusion-------------------------------------------------------------------------------84 Chapter 5 The Instability of a-Si:H Thin Film Transistor 5.1. Threshold voltage metastability----------------------------------------------------93 5.1.1. The stretched exponential model----------------------------------------93 5.1.2. The parameters extraction of stretched exponential model------97 5.1.3. The reversible defect creation--------------------------------------------98 5.2. The humidity effect-------------------------------------------------------------------100 5.2.1. Introduction-------------------------------------------------------------------100 5.2.2. The experimental instruments and setup------------------------------100 5.2.3. Results and discussions ----------------------------------------------------101 5.3. Conclusion------------------------------------------------------------------------------102 Chapter 6 Conclusions and Future Work 6.1 Conclusions--------------------------------------------------------------------------------129 6.2 Future work--------------------------------------------------------------------------------132 References------------------------------------------------------------------------------------------133 Vita-----------------------------------------------------------------------------------------------------141 Publication List------------------------------------------------------------------------------------142

    References

    [1] K. S. Karim, A. Nathan, J. A. Rowlands, and S. O. Kasap, “X-ray detector with on-pixel amplification for large area diagnostic medical image,“ IEE Proc. Circuits, Devices and Systems, vol. 150. no. 4, pp. 267-273 (2003).
    [2] T.L. Credelle, “Thin film transistor for video applications,“ in conf. Res. Int. Display Research Conf., pp. 208-214 (1988)
    [3] M. Katayama, “TFT-LCD technology,” Thin Solid Films, vol. 341, pp. 140-7 (1999)
    [4] T. Tsukada, in Technology and Applications of Amorphous Silicon, R.A. Street, Ed Berlin Heidelberg: Spring, 2000, pp. 7-89.
    [5] M. J. Powell, “The physics of a-Si TFTs,” IEEE Trans. Electron Devices, vol.36, no. 12, pp. 2753–2763 (1989).
    [6] I. Chen, "The interface and the field effect in thin-film transistors," J. Appl. Phys., vol. 56, pp. 396-400 (1984).
    [7] A. R. Hepburn, C. Main, J. M. Marshall, C. van Berkel, and M. J. Powell, "Charge trapping effects in amorphous silicon/silicon nitride thin film transistors," J. Non-Cryst. Solids, vol. 97, pp. 903-6 (1987).
    [8] N. Ibaraki, K. Fukuda, and H. Takata, "The effect of interface states on amorphous-silicon transistors," IEEE Trans. Electron Devices, vol. 36, pp. 2971-2 (1989).
    [9] K. Sung Ki, L. Keun Soo, and J. Jin, "Creation of interface states between SiO2 and a-Si:H in a-Si:H thin film transistors by bias-stress," J. Non-Cryst. Solids, vol. 198, pp. 428-31 (1996).
    [10] H. C. Slade, M. S. Shur, S. C. Deane, and M. Hack, "Below threshold conduction in a-Si:H thin film transistors with and without a silicon nitride passivating layer," Appl. Phys. Lett., vol. 69, pp. 2560-2 (1996).
    [11] C. van Berkel, in Amorphous and Microcrystalline Semiconductor Devices, vol. 1, J. Kanicki, Ed. Norwood, MA: Artech House, 1991, pp. 397-447.
    [12] R. A. Street and M. J. Thompson, “Electronic States at the Hydrogenated Amorphous Silicon/Silicon Nitride Interface,” Appl. Phys. Lett., 45, 769 (1984).
    [13] T. Chikamura, S. Hotta, and S. Nagata, “The Characteristics of Amorphous Si TFT and its Application in Liquid Crystal Displays,” Mat. Res. Soc. Symp. Proc., 95,421 (1987)
    [14] K. Hiranaka, T. Yoshimura, and T. Yamaguchi, “Effects of Deposition Sequence on Amorphous Silicon Thin-Film Transistors,” Jpn. J. Appl. Phys., 28(11), 2197 (1989).
    [15] Y. Kuo, M. Okajima, and M. Takeichi, “Plasma Processing Aspects of the Fabrication of Amorphous Silicon Thin-Film Transistor Arrays,” IBM J. Research and Development, 43(1/2), 73(1999).
    [16] K. Hiranaka, T. Yoshimura, and T. Yamaguchi, “Influence of an a-SiNX:H gate insulator on an amorphous Si TFT,” J. Appl. Phys., 62, 2129(1987).
    [17] C. van Berkel and M. J. Powell, “The Photosensitivity of Amorphous Silicon Thin Film Transistors,” Journal of Non-Crystalline Solids, vol 77-78, pp. 1393-1396, (1985).
    [18] Hanfeng Chen, Sung-Soo Kim, Sung-Hee Lee, Oh-Jae Kwon, Jun-Ho Sung, “Nonlinearity compensated smooth frame insertion for motion-blur reduction in LCD,” Multimedia Signal Processing, 2005 IEEE 7th Workshop on pp.1 - 4
    [19] S. S. Kim, et al., “Novel TFT-LCD Technology for Motion Blur Reduction Using 120Hz Driving with McFi,” SID Symposium Digest, pp. 1003-1006 (2007).
    [20] R. A. Street, Technology and Applications of Amorphous Silicon. Berlin Heidelberg: Springer (2000).
    [21] W. E. Spear and P. G. Le Comber, “Investigation of the Localized State Distribution in Amorphous Si Films,” J. Non-Cryst. Solids, 8-10, 727-738 (1972).
    [22] M. J. Powell, “Analysis of Field-effect-conductance Measurements on Amorphous Semiconductors,” Phil. Mag. B, 43 (1), 93 (1981).
    [23] C.-Y. Huang, S. Guha, and S. J. Hudgens, “Study of Gap States in Hydrogenated Amorphous Silicon by Transient and Steady-state Photoconductivity Measurements,” Phys. Rev. B, 27 (12), 7460 (1983).
    [24] J. D. Cohen, D. V. Lang, and J. P. Harbison, “Direct Measurement of the Bulk Density of Gap States in n-type Hydrogenated Amorphous Silicon,” Phys. Rev. Lett., 45 (3), 197 (1980).
    [25] M. Hirose, T. Suzuki, and G. H. Döhler, “Electronic Density of States in Discharge-produced Amorphous Silicon,” Appl. Phys. Lett. 34 (3), 234 (1979).
    [26] P. Viktorovitch and G. Moddel, “Interpretation of the Conductance and Capacitance Frequency Dependence of Hydrogenated Amorphous Silicon Schottky Barrier Diodes,” J. Appl. Phys., 51 (9), 4847 (1980).
    [27] M. Shur and M. Hack, “Physics of Amorphous Silicon Based Alloy Field-effect Transistors,” J. Appl. Phys., 55 (10) , 3831 (1984).
    [28] S. Kishida, Y. Naruke, Y. Uchida, and M. Matsumura, “Theoretical Analysis of Amorphous-silicon Field-effect-transistors,” Jpn. J. Appl. Phys., 22 (3), 511 (1983).
    [29] J. G. Shaw and M. Hack, “An Analytical Model for Calculating Trapped Charge in Amorphous Silicon,” J. Appl. Phys., 64 (9), 4562 (1988).
    [30] R. A. Street, Hydrogenated Amorphous Silicon, Cambridge University Press, (1991)
    [31] M. S. Shur, M. D. Jacunski, H. C. Slade, and M. Hack, “Analytical Models for Amorphous-silicon and Poly-silicon Thin-film Transistors for High-definition-display Technology,” J. of the SID, 3-4, 223 (1995).
    [32] Y. Kuo, Amorphous Silicon Thin Film Transistor, Springer Press, 2003.
    [33] Peyman Servati and Arokia Nathan, “Modeling of the Reverse Characteristics of a-Si:H TFTs,” IEEE Trans. Electron Devices, VOL. 49, NO. 5, pp. 812–819 (2002).
    [34] M. J. Powell, “Charge Trapping Instabilities in Amorphous Silicon-silicon Nitride Thin-film Transistors,” Appl. Phys. Lett., 43 (6), 597 (1983).
    [35] W. B. Jackson and M. D. Moyer, “Creation of Near-interface Defects in Hydrogenated Amorphous Silicon-silicon Nitride Heterojunction: the Role of Hydrogen,” Phys. Rev. B, 36 (11), 6217 (1987).
    [36] F. R. Libsch and J. Kanicki, ”Bias-stress-induced Stretched-exponential Time Dependence of Charge Injection and Trapping in Amorphous Silicon Thin-film Transistors,” Appl. Phys. Lett., 62(11), 1286(1993).
    [37] M. J. Powell, C. van Berkel, and J. R. Hughes, “Time and Temperature Dependence of Instability Mechanisms in Amorphous Silicon Thin-film Transistors,” Appl. Phys. Lett., 54(14), 1323 (1989).
    [38] N. Lustig and J. Kanicki, ”Gate Dielectric and Contact Effects in Hydrogenated Amorphous Silicon-silicon Nitride Thin-film Transistors,” J. Appl. Phys., 65(10), 3951 (1989).
    [39] M.Stutzmann, “Weak Bond-dangling Bond Conversion in Amorphous Silicon,” Phil. Mag. B, 56(1), 63(1987).
    [40] Z. E. Smith and S. Wagner, “Band Tail, Entropy, and Equilibrium Defects in Hydrogenated Amorphous Silicon,” Phys. Rev. Lett., 59(6), 688(1987)
    [41] R. A. Street, C. C. Tsai, J. Kakalios and W. B. Jackson, “Hydrogen Diffusion in Amorphous Silicon,” Phil. Mag. B, 56(3), 305(1987)
    [42] T. L. Credelle, “Thin film transistor for video applications,” in Proc. Res. Int. Display Res. Conf., 1988, pp. 208–214.
    [43] K. S. Karim, A. Nathan, J. A. Rowlands, and S. O. Kasap, “X-ray detector with on-pixel amplification for large area diagnostic medical image,” Proc. Inst. Electr. Eng.—Circuits, Devices Syst., vol. 150, no. 4, pp. 267–273 (2003).
    [44] S. Luana and G. W. Neudeck, “An experimental study of the source/drain parasitic resistance effects in amorphous silicon thin film transistors,” J. Appl. Phys., vol. 72, no. 2, pp. 766–772 (1992).
    [45] B. Popescu, M. Hundhausen, and L. Ley, “Study of space-charge-limited currents in high-voltage TFTs based on a-Si : H,” J. Non-Cryst. Solids, vol. 283, no. 1–3, pp. 155–161 (2001).
    [46] G. E. Possin, D. E. Castleberry, W. W. Piper, and H. G. Parks, “Contact limited behavior in amorphous-silicon FET for applications to matrix addressed liquid-crystal displays,” in Proc. SID, 1985, vol. 26, no. 3, pp. 183–189.
    [47] S. M. Gadel Rab and S. G. Chamberlain, “The origin and nature of contact resistance in a-Si :H TFTs,” in Proc. Mater. Res. Soc. Symp., 1994, vol. 336, pp. 835–840.
    [48] T. Globus, H. C. Slade, M. S. Shur, and M. Hack,"Density of deep bandgap states in amorphous silicon from the temperature dependence of thin film transistor current", Mat. Res. Soc. Proc., vol. 336, pp. 823 (1994).
    [49] C van Berkel and M. J. Powell, “Photo-field effect in amorphous silicon thin film transistors, “J. Appl. Phys., vol. 60, pp.1521-1527 (1986)
    [50] H.C. Tuan, M. J. Thompson, N. M. Johnson, and R. A. Lujan, “Dual-gate a-Si:H thin film transistors,” IEEE Electron Device Lett., vol. 3, no. 12, pp. 357-359 (1982).
    [51] Y. Kuo, “Non-Photosensitive, Vertically redundant thin film transistor,” J. Electrochem. Soc., 143(4), pp. 1469 (1996).
    [52] Peyman Servati, Karim S. Karim and Arokia Nathan, “Static characteristics of a-Si:H dual-gate TFTs,” IEEE Trans. Elec. Devices., vol. 50, pp.926-932 (2003).
    [53] Jerzy Kanicki, Nicolas Szydlo and Alain Rolland, “Analysis of the amorphous silicon thin film transistors behavior under illumination,” in conf. AM-LCD, pp.211-214 (1997).
    [54] Yuhua Cheng, Chenming Hu, MOSFET modeling & BSIM3 user's guide, SEC 5.2.3, Springer Press (1999)
    [55] Chung-Yu Liang, T. C. Chang, Liu Po-Tsun, Feng-Yuan Gan, F. S. Yeh, “The Mechanisms of on/off currents for the Dual-Gate a-Si:H thin film transistors with various length sizes of indium-tin-oxide top gate,” IDW, 2006, pp.1663-1666.
    [56] T. Leroux, “Static and dynamic analysis of amorphous silicon thin film transistors,“ Solid State Elctron., vol. 29, pp. 47-58 (1986).
    [57] M. Akiyama, M. Dohjo, T. Higuchi, H. Toeda, K. Suzuki, T. Aoki, Y. Oana, “An Active Matrix LCD with Integrated Driver Circuits Using a-Si TFTs”, Japan Display, pp.212-215 (1986).
    [58] Keith A. Jenkins, J. Y.C. Sun, J. Gautier, “Characteristics of SOI FET’s Under Pulsed Condition,” IEEE Trans. Electron Devices, vol. 44, no. 11, pp. 1923–1930 (1977).
    [59] Ling Wang, Tor A. Fjeldly, Benjamin Iniguez, Holly C. Slade, Michael Shur, “Self-Heating and Kink Effects in a-Si:H Thin Film Transistors,” IEEE Trans. Electron Devices, vol. 47, no.2, pp. 387–397 (2000).
    [60] N. Lusting J. Kanicki, R. Wisnieff, and J. Griffith, “Temperature dependent characteristics of hydrogenated amorphous silicon thin film transistors,” Mat. Res. Soc. Symp. Proc., vol.118, pp.267-270 (1988).
    [61] W. B. Jackson, J. M. Marshall, and M. D. Moyer, “Role of hydrogen in formation of metastable defects in hydrogenated amorphous silicon,” Phys. Rev. B 39, 1164 - 1179 (1989).
    [62] J. Kakalios, R. A. Street, and W. B. Jackson, “Stretched-exponential relaxation arising from dispersive diffusion of hydrogen in amorphous silicon,” Phys. Rev. Lett. 59, 1037 (1987).
    [63] S. C. Deane, R. B. Wehrspohn, and M. J. Powell, “Unification of the time and temperature dependence of dangling-bond-defect creation and removal in amorphous-silicon thin-film transistors,” Phys. Rev. B 58, 12625 - 12628 (1998).
    [64] M. J. Powell, C. van Berkel, and A. R. Franklin, “Defect pool in amorphous-silicon thin-film transistors,” Phys. Rev. B 45, 4160 - 4170 (1992).
    [65] Zheng-Tao Zhu, Jeffrey T. Mason, Ru‥ diger Dieckmann, and George G. Malliaras, “Humidity sensors based on pentacene thin-film transistors,” Appl. Phys. Lett. 81, 4643 (2002).
    [66] Yong Qiu, Yuanchuan Hu, Guifang Dong, Liduo Wang, Junfeng Xie, and Yaning Ma, “H2O effect on the stability of organic thin-film field-effect transistors,” Appl. Phys. Lett., 83, 1644 (2003).
    [67] M. Tanielian, Phil. Mag. B, 45, 432 (1982)
    [68] H. Fritzsch, “Effect of the surface on the properties of amorphous semiconductors,” in Amorphous Silicon and Related Materials, World Scientific, Singapore, 1, 315 (1988).
    [69] C. van Berkel and M. J. Powell, “Resolution of amorphous silicon thin-film transistor instability mechanisms using ambipolar transistors,” Appl. Phys. Lett., 51, 1094 (1987).
    [70] M. J. Powell, C. van Berkel, I. D. French, and D. H. Nicholls, “Bias dependence of instability mechanisms in amorphous silicon thin-film transistors,” Appl. Phys. Lett., 51, 1242 (1987).
    [71] Ryoji Oritsuki, Toshikazu Horii, Akira Sasano, Ken Tsutsui, Toshiko Koizumi, Yoshiyuki Kaneko and Toshihisa Tsukada, “Threshold Voltage Shift of Amorphous Silicon Thin-film Transistors During Pulse Operation,” Jpn. J. Appl. Phys., vol. 30, no. 12B, pp. 3719–3723 (1991).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE