簡易檢索 / 詳目顯示

研究生: 陳重光
Chen, Chung-Kuang
論文名稱: 具低複雜度前景式校正與動態元件匹配之十位元1GS/s數位類比轉換器
A 10bit 1 GS/s DAC with a Low Complexity Foreground Calibration and Dynamic Element Matching
指導教授: 朱大舜
Chu, Ta-Shun
口試委員: 王毓駒
Wang, Yu-Jiu
吳仁銘
Wu, Jen-Ming
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 89
中文關鍵詞: 數位類比轉換器動態元件匹配前景式校正
外文關鍵詞: DAC, Dynamic Element Matching, Foreground Calibration
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究提出具低複雜度前景式校正與動態元件匹配功能的十位元1GS/s電流引導式數位類比轉換器,採用製程為TSMC 65 nm,1P9M互補金氧半導體。
    在輸出負載為50Ω,雙端差動輸出訊號範圍1.6V下,靜態參數的表現上,DNL與INL皆在0.1LSB內;動態參數的表現上,輸入訊號在奈奎斯頻段內SFDR皆達75dB以上。
    校正電路的部分利用SAR ADC作為前景式校正(foreground calibration)的誤差偵測器(error detector)。
    轉換器正常運作模式下會根據電流誤差預先調整輸入訊號(LSB predistortion)來補償誤差,再配合亂數輪轉二進位權重(Random Rotated Binary Weighting)演算法來使非線性所引起的諧波失真轉換為與輸入訊號無關的隨機雜訊,綜合上述機制能達到高精準度之高速數位類比轉換器。


    A 10 bit 1 GS/s digital to analog to digital converter with a Low Complexity Foreground Calibration and Dynamic Element Matching is presented, fabricated in a TSMC 65 nm process and 1P9M complementary MOSFETs.
    The measured differential nonlinearity and integral nonlinearity are lower than 0.1 least significant bit(LSB) as well as the spurious free dynamic range(SFDR) measured is better than 75dB from DC to Nyquist while driving a 50Ω load with an output swing of 1. V_pp6.
    This work takes successive approximation analog to digital converter(SAR ADC) as current error detector in foreground calibration circuit.
    In normal mode, data converter will adjust input digital code to compensate the current error by LSB predistortion algorithm. Besides, we also take Random Rotated Binary Weighting Selection(RRBS) as DEM to disturb the correlation between current error and input frequency.
    Above all, we can improve the harmonic distortion effectively and get a high SFDR performance.

    第1章 序論 10 1.1 研究動機 10 1.2 論文架構 10 第2章 數位類比轉換器基本原理與設計考量 12 2.1 數位類比轉換器簡介 12 2.2 靜態參數(Static Parameter) 14 2.2.1 解析度 (Resolution) 14 2.2.2 差異非線性誤差 (Differential Nonlinearity,DNL) 14 2.2.3 累積非線性誤差 (Integral Nonlinearity,INL) 14 2.2.4 增益誤差 (Gain Error) 14 2.2.5 偏移誤差 (Offset Error) 15 2.2.6 單調性 (Monotonicity) 15 2.3 動態參數(Dynamic Parameter) 15 2.3.1 總諧波失真(Total Harmonic Distortion,THD) 15 2.3.2 訊號對雜訊比(SNR) 15 2.3.3 訊號對雜訊失真比(SNDR) 16 2.3.4 無假訊號動態範圍(SFDR) 16 2.4 靜態參數與動態參數之關係 17 2.4.1 INL與SFDR 17 2.4.2 DNL與SQNR 18 2.5 數位類比轉換器基本架構 18 2.5.1 電壓調變式數位類比轉換器 18 2.5.2 電荷調變式數位類比轉換器 20 2.5.3 電流調變式數位類比轉換器 21 2.6 數位類比轉換器數位編碼方式 22 2.6.1 二進位制權重電流引導式數位類比轉換器架構 22 2.6.2 溫度計解碼器電流引導式數位類比轉換器架構 23 2.6.3 編碼模式與靜態參數 24 2.6.4 分段式電流引導式數位類比轉換器架構 27 2.7 數位類比轉換器效能的限制因素 28 2.7.1 電流源MOS元件與不匹配(Mismatch)分析 28 2.7.2 Code-Dependent Loading Variation (CDLV) 29 2.7.3 Code-Dependent Switching Transients (CDSTs) 32 2.7.4 系統性誤差(Systematic Error) 34 第3章 提升數位類比轉換器效能的方法 37 3.1 前人技術簡介 37 3.1.1 前景式校正(Foreground Calibration) 37 3.1.2 誤差預先調整輸入訊號(LSB Predistortion) 40 3.1.3 亂數輪轉二進位權重(Random Rotated Binary Weighting Selection) 41 3.2 本論文提出之改良方法 43 3.2.1 校正模式的比較邏輯 46 3.2.2 轉換器模式的運作邏輯 53 3.2.3 本論文方法原理 56 第4章 電路實現 58 4.1 電流源電路(Current Source) 58 4.1.1 架構考量 58 4.1.2 電晶體尺寸考量 65 4.2 電流源偏壓電路(Bias Circuit) 67 4.3 閂鎖同步電路(Retiming Latch) 67 4.4 動態二階比較器(Dynamic Two-Stage Comparator) 68 第5章 模擬結果與量測規劃 72 5.1 使用本論文方法前後的效能差異 72 5.1.1 自訂電流誤差下之結果比較 72 5.1.2 Tran Monte-Carlo下結果比較 79 5.2 Post-Layout Simulation結果 81 5.2.1 靜態規格參數DNL、INL 81 5.2.2 動態規格參數SFDR 82 5.2.3 規格表 84 5.3 量測規劃 85 第6章 總結與未來展望 86 6.1 總結 86 6.2 未來展望 86

    [1] H. Khorramabadi, EE247 Lecture 13 Data Converters- Testing & DAC Design, University of California, Berkeley, 2010.
    [2] X.-H. Wang, "1-V 10-bit 2GSample/s D/A Converter based on Precision Current Reference in 90-nm CMOS," in A thesis for the Degree of Master of Science in Electronics Engineering of National Central University, 20008.
    [3] H. Khorramabadi, EECS 247 Lecture 14: Data Converters DAC Design, University of California, Berkeley, 2010.
    [4] Pelgrom J.M., Duinmaijer C.J., Welbers P.G, "Matching properties of MOS transistors," IEEE J Solid-State Circuits, 1989.
    [5] C.-H. Lin, "A 12 bit 2.9 GS/s DAC With IM3 $ ≪ -$60 dBc Beyond 1 GHz in 65 nm CMOS," Solid-State Circuits, IEEE Journal, 12 2009.
    [6] A. van den Bosch, M. A. F. Borremans, M. S. J. Steyaert and W. Sansen, "A 10-bit 1-GSample/s Nyquist current-steering CMOS D/A converter," IEEE Journal of Solid-State Circuits, 2001.
    [7] W.-T. Lin, "Dynamic-Performance-Improved Techniques for Nyquist-Rate Current-Steering DACs," in A Dissertation for the Degree of Doctor of Philosophy in Electronics Engineering of National Cheng Kung University, 2013.
    [8] J. Deveugele, G. Van der Plas, M. Steyaert, G. Gielen and W. Sansen, “A gradient-error and edge-effect tolerant switching scheme for a high-accuracy DAC,,” 於 IEEE Transactions on Circuits and Systems I: Regular Papers, 2004.
    [9] L.-F. Wei, “A 10-Bit 1-GS/s Current-Steering DAC with Foreground Calibration Method,” 2007.
    [10] W.-H. Tseng, “High-Speed Current-Steering Digital-to-Analog Converters,” 於 A Dissertation for the Degree of Doctor of Philosophy in Electronics Engineering of National Chiao-Tung University, 3011.
    [11] S. Su, T. Tsai, P. K. Sharma and M. S. Chen, “A 12 bit 1 GS/s Dual-Rate Hybrid DAC With an 8 GS/s Unrolled Pipeline Delta-Sigma Modulator Achieving > 75 dB SFDR Over the Nyquist Band,” 於 IEEE Journal of Solid-State Circuits, vol. 50, no. 4, pp. 896-907, April 2015, doi: 10.1109/JSSC.2014.2385752..
    [12] R. K. Henderson and O. J. A. P. Nys, “Dynamic element matching techniques with arbitrary noise shaping function,” 於 1996 IEEE International Symposium on Circuits and Systems. Circuits and Systems Connecting the World. ISCAS 96, Atlanta, GA, USA, 1996, pp. 293-296 vol.1, doi: 10.1109/ISCAS.1996.539887..
    [13] K.-D. C. a. T.-H. Kuo, “An Improved Technique for Reducing Baseband Tones in Sigma–Delta Modulators Employing Data Weighted Averaging Algorithm Without Adding Dither,” 於 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 46, NO. 1, JANUARY 1999.
    [14] Wei-Te Lin and Tai-Haur Kuo, “A compact dynamic-performance-improved current-steering DAC with random rotation-based binary-weighted selection,” 於 IEEE JSSC, 2012.

    QR CODE