簡易檢索 / 詳目顯示

研究生: 詹昕翰
Chan, Hsin-Han
論文名稱: 使用薩格納克干涉儀與壓電陶瓷的光纖脈衝雷射之研究
Study of Fiber Pulse Laser Using Sagnac Interferometer With PZT
指導教授: 王立康
Wang, Li-Karn
口試委員: 施宙聰
Shy, Jow-Tsong
潘犀靈
Pan, Ci-Ling
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 56
中文關鍵詞: 薩格納克干涉儀脈衝雷射
外文關鍵詞: Sagnac, Pulse Laser
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文中我們使用一般線型光纖雷射共振腔為主軸,將其共振腔加入薩格納克(Sagnac)干涉儀與壓電陶瓷(PZT),利用兩者特性產生週期性損耗來達到主動鎖模進而產生脈衝,並藉由改變整個共振腔長度來達到調整光脈衝週期的效果。在本研究中,我們產生22μs、44μs、88μs週期的光脈衝,也比較了訊號產生器給的方波訊號與正弦波訊號對於光脈衝的影響,最後探討環境對於此架構的影響,分別做了光纖脈衝對聲音、溫度、拍擊干擾時的表現。


    In this paper, we incorporate a Sagnac interferometer and a PZT in a fiber-optic linear-type laser cavity. We use the Sagnac interferometer and the PZT to generate periodic cavity loss and active mode-locking, and then generate pulses. We modify the length of the Sagnac interferometer to adjust the period of the optical pulse train, in generating optical pulses of several hundred nanoseconds in width. We then compare the influence of the square wave signal and the sine wave signal given by the signal generator on the light pulse. Finally, a discussion on the influence of the environment, which includes the sound, temperature and vibration, on pulse generation is given.

    目錄 第一章 序論 1 1.1研究背景 1 1.2研究動機 1 1.3文獻回顧 2 1.3.1 雷射共振腔 2 1.3.2薩格納克干涉儀 2 1.3.3 採用Sagnac濾波器的環形雷射 3 1.4 Q調節環形共振腔 5 1.5論文架構 5 第二章 基本原理 6 2.1 光纖(Fiber) 6 2.2 摻鉺光纖放大器(Erbium-Doped Optical Fiber Amplifier) 6 2.3 薄膜濾波器(Thin film filter) 8 2.4 極化控制器(Polarization controller) 9 2.5 光循環器(Optical Circulator) 9 2.6 光纖耦合器(Optical Fiber Coupler ) 12 2.7 壓電材料(Piezoelectric Material) 12 2.8光纖雷射(Fiber Laser) 13 2.9雷射共振腔參數 15 2.10干涉原理 16 2.11 薩格納克干涉儀(Sagnac Interferometer) 17 2.12主動鎖模 23 2.13 Q開關 24 第三章 實驗架構 25 3.1實驗架構 25 第四章 實驗結果與討論 30 4.1光源量測 30 4.2輸出光脈衝 31 4.3 不同環境下脈衝的穩定度 35 4.4雷射輸出穩定測試 43 4.5雷射週期容忍度與伏特容忍度 44 第五章 實驗結果與未來展望 51 5.1結論 51 5.2 未來方向 52 參考文獻 53 圖目錄 圖1- 1 光纖布拉格光柵應用於極短共振腔雷射[15] 2 圖1-2 光纖布拉格光柵應用於環型共振腔內[16] 2 圖1-3薩格納克干涉儀[17] 3 圖1-4 採用Sagnac濾波器的環形雷射架構[18] 3 圖1- 5 採用PZT與馬克詹德干涉儀的環形雷射架構[19] 5 圖2- 1 摻鉺光纖的吸收頻譜與增益圖[23] 6 圖2- 2摻鉺光纖能階圖[26] 7 圖2- 3薄膜濾波器示意圖 8 圖2- 4 薄膜濾波器 8 圖2- 5 極化控制器 9 圖2- 6 光由光循環器1號接頭到2號接頭示意圖 10 圖2- 7 光由光循環器2號接頭到3號接頭示意圖 10 圖2- 8 光循環器 11 圖2- 9 壓電陶瓷 13 圖2- 10 法布立-佩羅共振腔雷射 14 圖2- 11環形共振腔 14 圖2- 12 自由光譜範圍[29] 16 圖2- 13 薩格納克干涉儀 18 圖2- 14 光纖元件組成的薩格納克干涉儀 19 圖2- 15 受噪音干擾薩格納克干涉儀 22 圖2- 16 主動鎖膜雷射光功率與損耗隨著時間的關係圖[35] 24 圖3-1 薩格納克干涉儀與壓電陶瓷之線型光纖雷射脈衝架構 25 圖3- 2 訊號產生器連續方波訊號 26 圖3- 3 薩格納克兩路光相位隨時間變化圖 26 圖3- 4 薩格納克兩路光相位差隨時間變化圖 27 圖3- 5 薩格納克等效損耗圖 27 圖3-6 OSA測量雷射輸出光頻譜 28 圖3- 7 ESA測量雷射輸出光頻譜圖 28 圖3- 8 主動鎖模雷射示意圖 29 圖4- 1泵浦光源功率與雷射在5:5光纖耦合器輸出的曲線圖 30 圖4- 2 泵浦光源功率與在第一個9:1光纖耦合器輸出雷射功率的曲線圖 31 圖4- 3薩格納克干涉儀與壓電陶瓷之線型光纖雷射脈衝架構 32 圖4-4 薩格納克光程差4.4km產生的脈衝 32 圖4-5訊號產生器方波波形 33 圖4-6 薩格納克光程差8.8km產生的脈衝 33 圖4-7 薩格納克光程差17.6km產生的脈衝 34 圖4-8 薩格納克光程差4.4k、正弦波訊號產生的脈衝 34 圖4-9 一般環境下4.4km光脈衝波形圖 35 圖4-10 噪音環境下4.4km光脈衝波形圖 36 圖4-11 振動環境下4.4km光脈衝波形圖 36 圖4-12 低溫環境下4.4km光脈衝波形圖 37 圖4-13 一般環境下8.8km光脈衝波形圖 38 圖4-14 噪音環境下8.8km光脈衝波形圖 38 圖4-15 振動環境下8.8km光脈衝波形圖 39 圖4-16 低溫環境下8.8km光脈衝波形圖 39 圖4-17 一般環境下17.6km光脈衝波形圖 41 圖4-18 噪音環境下17.6km光脈衝波形圖 41 圖4-19 振動環境下17.6km光脈衝波形圖 42 圖4-20 低溫環境下17.6km光脈衝波形圖 42 圖4-21 0~90秒內光輸出強度變化曲線圖 44 圖4-22 1~10分鐘內光輸出強度變化曲線圖 44 圖4- 23方波週期44.1μs產生之光脈 45 圖4-24方波週期44.2μs產生之光脈衝 45 圖4-25方波週期44.3μs產生之光脈衝 45 圖4-26方波週期44.4μs產生之光脈衝 45 圖4-27方波週期44.5μs產生之光脈衝 45 圖4-28方波週期44.6μs產生之光脈衝 45 圖4-29 方波週期44.44μs產生之脈衝 46 圖4-30 方波週期44.45μs產生之脈衝 46 圖4-31 方波週期44.46μs產生之脈衝 46 圖4-32 方波週期44.47μs產生之脈衝 46 圖4-33 方波週期44.48μs產生之脈衝 47 圖4-34 方波週期44.49μs產生之脈衝 47 圖4-35 方波週期44.50μs產生之脈衝 47 圖4-36 方波週期44.51μs產生之脈衝 47 圖4-37 方波週期44.52μs產生之脈衝 47 圖4-38 方波週期44.53μs產生之脈衝 47 圖4-39 方波週期44.54μs產生之脈衝 48 圖4-40 方波週期44.55μs產生之脈衝 48 圖4-41 方波振幅0~9.4V產生之脈衝 48 圖4-42 方波振幅0~9.6V產生之脈衝 48 圖4-43 方波振幅0~9.8V產生之脈衝 49 圖4-44 方波振幅0~10V產生之脈衝 49 圖4-45 方波振幅0~10V產生之脈衝 49 圖4-46 方波振幅0~9.96V產生之脈衝 49 圖4-47 方波振幅0~9.90V產生之脈衝 50 表目錄 表4- 1泵浦光源功率與雷射在5:5光纖耦合器輸出的關係表 30 表4- 2 泵浦光源功率在與第一個9:1光纖耦合器輸出雷射功率的關係表 31 表4- 3輸出光強度穩定表 43

    [1] K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” Journal of Lightwave Technology, vol.15, pp.1263–1275, 1997.

    [2] C. A. Brackett, “Dense wavelength division multiplexing networks: Principles and applications,” IEEE Journal on Selected Areas in Communications, vol.8, pp.1-3, 1990.
    [3] S. J. Park, C. H. Lee, K. T. Jeong, H. J. Park, J. G. Ahn, and K. H. Song, “Fiber-to-the-home services based on WDM passive optical network,” Journal of Lightwave Technology vol.22, pp.2582–2590, 2004.
    [4] H. A. Macleod, “ Thin-Film Optical Filters,” Adam Hilger Bristol, UK, 1986.
    [5] A. N. Starodumov, L. A. Zenteno, D. Monzon, and E. De La Rosa, “Fiber Sagnac interferometer temperature sensor,” Applied Physics Letters, vol.70, no.1, pp.19-21, 1997.

    [6] H. Liang, Y. Jin, Y. Zhao, and J. Wang, “Twist sensor by using a pressure-induced birefringence single mode fiber based Sagnac interferometer,” Asia Communication and Photonics Conference, vol.8311, 83112H, 2011.

    [7] J. Wang, C. Shen, Y. Lu, D. Chen, and C. Zhong, “Liquid Refractive Index Sensor Based on a Polarization-Maintaining Fiber Loop Mirreo,” IEEE Sensor Journal, vol.13, no.5, pp.1721-1724, 2013.

    [8] T. Wang, C. Luo, and S. Zheng, “A fiber-optic current sensor based on a differentiating Sagnac interferometer,” IEEE Transactions on Instrumentation and Measurement, vol.50, no.3, pp.705-708, 2001.

    [9] Y. J. Rao, “In-fibre Bragg grating sensors,” Measurement Science and Technology, vol.8, no.4, pp.355-373, 1997.
    [10] L. Zhao and X. Huang, “Integrated condition monitoring system of transmission lines based on fiber bragg grating sensor,” International Conference on Condition Monitoring and Diagnosis, pp.667-670, 2016.
    [11] W. Liu, M. Li, C. Wang, and J. Yao, “Real-time interrogation of a linearly chirped fiber Bragg grating sensor based on chirped pulse compression with improved resolution and signal-to-noise ratio,” Journal of Lightwave Technology, vol29, no.9, pp.1239-1247, 2011.

    [12] M. Aktas,, T. Akgun, M. U. Demircin, and D. Buyukaydin, “Deep learning based multi-threat classification for phase-OTDR fiber optic distributed acoustic sensing applications,” Fiber Optic Sensors and Applications XIV, vol.10208, pp.1-17, 2017.

    [13] Y. Tong, Z. Li, J. Wang,, and C. Zhang, “Improved distributed optical fiber vibration sensor based on Mach-Zehnder-OTDR,” Science and Innovations, JW2A-16, 2017.
    [14] F. Zhu, Y. Zhang, L. Xia, X. Wu, and X. Zhang, “Improved Φ-OTDR sensing system for high-precision dynamic strain measurement based on ultra-weak fiber Bragg grating array,” Journal of Lightwave Technology, vol.33, no.23, pp.4775-4780, 2015.
    [15] Y. Kaneda, C. Spiegelberg, J. Geng, Y. Hu, T. Luo, and S. Jiang, “200mW, narrow-linewidth 1064.2nm Yb-doped fiber laser,” Optical Society of America Conference on Lasers and Electro-optics, 2004.

    [16] B. Wu, Y. Liu and Z Dai, “Narrow linewidth fiber grating FP cavity laser and application,” IEEE international Conference on Communications, Circuits and Systems Proceeding, vol.3, pp.1971-1974, 2006.

    [17] X. Fang, “Fiber-optic distributed sensing by a two-loop Sagnac interferometer,” Optics Letters, vol.21, no.6, pp.444–446, 1996.

    [18] Z. Jie, Y. Ping, Z. Haitao, W. Dongsheng, and G. Mali, “All-fiber mode-locked ring laser with a Sagnac filter,” IEEE Photonic Technology Letters, vol.23, no.18, pp.1301–1303, 2011.
    [19] S. M. Zhang, F. Y. Lu, and J. Wang, “All‐fiber actively Q‐switched Er3+/Yb3+ co‐doped ring laser,” Microwave and Optical Technology Letters, vol.49, no.9, pp.2183-2186, 2007.

    [20] D. W. Hewak, et al., “Quantum-Efficiency of Prasedymium Doped Ga:La:S Glass for 1.3 pm Optical Fiber Amplifiers,” IEEE Photonic Technol Letters, vol.6, no.5, pp.609-612, 1994.

    [21] C. Barnard, P. Myslinski, J. Chrostowski, and M. Kavehrad, “Analytical model for rare-earth-doped fiber amplifiers and lasers,” IEEE Journal Quantum Electronics, vol.30, pp.1817–1830, 1994.

    [22] H. Ono, M. Yamada, T. Kanamori, S. Sudo, and Y. Ohishi, “1.58-um band gain-flattened erbium-doped fiber amplifiers for WDM transmission systems,” IEEE Journal of Lightwave Technology, vol.17, no.3, pp.490-496, 1999.

    [23] G. P. Agrawal, Fiber-optic communication systems, John Wiley and Sons, 2012.

    [24] C. R. Giles and E. Desurvire, “Modeling erbium-doped fiber amplifers,” Journal of Lightwave Technology, vol.9, 1991.

    [25] A. Bjarklev, Optical fiber amplifiers: Design and system applications, Artech House, Inc, 1993.

    [26] Y. Sun, J. L. Zyskind, and A. K. Srivastava, “Average inversion level, modeling, and physics of erbium-doped fiber amplifiers,” IEEE Journal of Selected Topics in Quantum Electronics, vol.3, no.4, pp.991-1007, 1997.

    [27] M. J. F. Digonnet, Rare Earth-Doped Fiber Lasers and Amplifiers, Marcel Dekker, 1993.

    [28] https://en.wikipedia.org/wiki/Free_spectral_range

    [29] A. Luo, Z. Luo, and W. Xu, “Multi-wavelength switchable erbium-doped fiber ring laser with a PBS-based Mach-Zehnder comb filter,” IEEE Photonics Journal, vol.3, no.2, pp.197-220, 2011.

    [30] A.Sulaiman, S. W. Harun, H. Arof, and H. Ahmad, “Compact and tunable erbium-doped fiber laser with microfiber Mach-Zehnder interferometer,” IEEE Journal Quantum Electronics, vol.48, no9, pp.1165-1168, 2012.

    [31] T. Li, A. Wang, K. Murphy,, and R. Claus, “White-light scanning fiber Michelson interferometer for absolute position–distance measurement,” Optics Letters, vol.20, no.7, pp.785-787, 1995.

    [32] Z. Tian, S. S. Yam, and H. P. Loock, “Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber,” Optics Letters, vol.33, no.10, pp.1105-1107, 2008.

    [33] L. Yuan, J. Yang, and Z. Liu, “A compact fiber-optic flow velocity sensor based on a twin-core fiber Michelson interferometer,” IEEE Sensors Journal, vol.8, no.7, pp.1114-1117, 2008.

    [34] http://spie.org/publications/fg14_p33-36_mode_locking?SSO=1

    QR CODE