研究生: |
葉弘平 Yeh, Hong-Ping. |
---|---|
論文名稱: |
基於連續Duffing-Like模型之磁流變阻尼器半主動控制研發 Development of Magnetorheological damper based on Duffing-Like model for semi-active control |
指導教授: |
杜佳穎
Tu, Jia-Ying |
口試委員: |
徐勝均
Xu, Sheng-Dong 楊智媖 Yang, Chih-Ying |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2017 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 69 |
中文關鍵詞: | 減振 、半主動控制 、磁流變阻尼器 、遲滯曲線 、混合測試 |
外文關鍵詞: | vibration reduction, semi-active control, Magnetorheological damper, hysteresis loop, hybrid testing |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文目的為討論磁流變阻尼器之控制系統設計與實踐應用,磁流變阻尼器是一種利用磁流變液所製成的阻尼裝置,應用在土木與機械工程之基底隔振上,調整輸入磁流變阻尼器的電壓可以改變阻尼器之特性,為一種可調變的智能阻尼裝置,但磁流變阻尼器內部為非線性遲滯動態,不易於系統建模及控制設計。
過去的文獻中,大多使用Bouc-Wen模型來建立磁流變阻尼器之數學模型,但是Bouc-Wen模型其方程式具有不連續性,較難使用現有的非線性理論分析穩定性及設計控制器,因此本論文使用一創新、連續且動態確定的Duffing-Like方程式,能夠有效的仿真磁流變阻尼器之遲滯動態行為,以建立一確定且系統化的模型,並利用此模型來進行參數識別、分析系統的穩定性及設計半主動控制方法,確實掌握磁流變阻尼器之輸出響應,來達到減振實務驗證。
本文最後的模擬與實驗中,利用Duffing-Like模型設計線性化回授控制器,並將控制器實踐在真實物理系統的磁流變阻尼器,線性化回授控制是一種非線性系統的控制方法,找出控制電壓與輸出之間的關係,由調變控制電壓的方式,來控制磁流變阻尼之輸出力以達到結構物減振;首先,在電腦Matlab中模擬,確認系統在經過控制器控制後的穩定性和追蹤性,再藉由混合測試實驗(Hybrid testing),將磁流變阻尼器與數值結構物模型結合測試,並且利用狀態回授設計數值結構物模型所需之減振力,亦即磁流變阻尼器之參考力,透過力感測器回傳之力訊號,來驗證磁流變阻尼器經由線性化回授控制後之追蹤效果以及減振效果。
The purpose of this study is about Control design of Magnetorheological Damper. Magnetorheological Damper is a damper which contains magnetorheological fluid, usually be used in base-isolated structure in civil engineering and mechanical engineering, and the damper force can be adjusted by the control voltage. Magnetorheological Damper is an intelligent damping device, however, it is difficult to model and design controller due to the hysteresis and nonlinear dynamics of the Magnetorheological Damper.
According to the literature in the past, the Bouc-Wen model is often used in modeling Magnetorheological Damper. However, because the equation has discontinuous functions, it is hard to identity the system parameters, analyze the system stability and design the controller by using the nonlinear system theory. Therefore, this study uses the innovative and continuous Duffing-Like equation, which can express the hysteresis of Magnetorheological Damper and the parameters identification can be done in systematic way. Also, it is allowed to using the nonlinear system theory to analyze the stability and design the controller with the continuous Duffing-Like model. Above all, the damper force can be control to achieve the reduction of vibration.
At last, designing the controller of the Duffing-Like model by Feedback linearization, using Matlab to simulate the Magnetorheological Damper with the Duffing-Like model, and testing the real-time experiment by the hybrid testing. The tracking effect of the controller and the vibration reduction can be determined by the damper force.
1. P.Y. Lin, P.N. Roschke, C.H. Loh, L.L Chung and C.P. Chang, Semi-Active Control of a Structure with an MR Damper. 國家地震工程研究中心, 2002.
2. B.F. Spencer Jr, S.J. Dyke, M.K. Sain and J.D. Carlson, Phenomenological model for magnetorheological dampers. Journal of Engineering Mechanics, 1997. 123(3): pp. 230-238.
3. S.J. Dyke, B.F. Spencer Jr, M.K. Sain, J.D. Carlson, Modeling and control of magnetorheological dampers for seismic response reduction. Smart materials and structures, 1996. 5(5): p. 565.
4. T. Tse and C. Chang, Shear-mode rotary magnetorheological damper for small-scale structural control experiments. Journal of structural engineering, 2004. 130(6): pp. 904-911.
5. W.H. Kuo, T.C. Yang, C.C. Hsu and H.C. Chio, Study on magnetorheological damper of flow mode. Journal of Technology, 2011.
6. R.S. Prabakar, C. Sujatha and S. Narayanan, Optimal semi-active preview control response of a half car vehicle model with magnetorheological damper. Journal of Sound and Vibration, 2009. 326(3-5): pp. 400-420.
7. L. Pang, G.M. Kamath and N.M. Wereley. Dynamic characterization and analysis of magnetorheological damper behavior. in Smart Structures and Materials 1998: Passive Damping and Isolation, 2-3 March 1998. 1998. USA: SPIE-Int. Soc. Opt. Eng.
8. S.J. Dyke, B.F. Spencer Jr, M.K. Sain, J.D. Carlson, Seismic response reduction using magnetorheological dampers. in Proceedings of the 13th World Congress. Vol.L: Systems Engineering and Management, 30 June-5 July 1996. 1997. Oxford, UK: Pergamon.
9. G. Yang, B.F. Spencer Jr, J.D. Carlson, M.K. Sain, Large-scale MR fluid dampers: Modeling and dynamic performance considerations. Engineering Structures, 2002. 24(3): pp. 309-323.
10. S.B. Choi, S.K. Lee and Y.P. Park, A hysteresis model for the field-dependent damping force of a magnetorheological damper. Journal of Sound and Vibration, 2001. 245(2): pp. 375-383.
11. C.H. Loh, L. Wu and P. Lin, Displacement control of isolated structures with semi‐active control devices. Structural Control and Health Monitoring, 2003. 10(2): pp. 77-100.
12. H.S. Kim and P.N. Roschke, Design of fuzzy logic controller for smart base isolation system using genetic algorithm. Engineering Structures, 2006. 28(1): pp. 84-96.
13. S.F. Ali and A. Ramaswamy, Testing and modeling of MR damper and its application to SDOF systems using integral backstepping technique. Journal of Dynamic Systems, Measurement, and Control, 2009. 131(2): p. 021009.
14. S. Yan, W. Zheng and G. Song. GA-optimized fuzzy logic control of high-rise building for wind loads. in SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring. 2009. International Society for Optics and Photonics.
15. L. Li, G. Song and J. Ou, Nonlinear structural vibration suppression using dynamic neural network observer and adaptive fuzzy sliding mode control. Journal of Vibration and Control, 2010. 16(10): pp. 1503-1526.
16. Z.S. Huang, C. Wu and D.S. Hsu, Semi-active fuzzy control of mr damper on structures by genetic algorithm. Journal of Mechanics, 2009. 25(1): pp. N1-N6.
17. G. Duffing, Erzwungene Schwingungen bei veränderlicher Eigenfrequenz und ihre Technische Bedeutung. 1918.
18. J.Y. Tu, T.Y. Cheng and P.Y. Lin. Using Duffing equation to model magnetorheological damper dynamics. in The 6th world conference on structural control and monitoring, Barcelona, Spain. 2014.
19. J.Y. Tu, P.Y. Lin and T.Y. Cheng, Continuous hysteresis model using Duffing-like equation. Nonlinear Dynamics, 2015. 80(1-2): pp. 1039-1049.
20. Y. Zhang, F. Luo, Y. Yin, J. Liu, X. Yu, Singularity-conquering ZG controller for output tracking of a class of nonlinear systems. in Control Conference (CCC), 2013 32nd Chinese. 2013. IEEE.
21. Y.C. Chien, T.Y. Cheng, J.Y. Tu, Parameter Identification of Hysteresis Using Duffing-Like Model. in European Conference on Structural Control, 2016, EACS.