簡易檢索 / 詳目顯示

研究生: 卓昇
Cho, Sheng
論文名稱: 以射頻濺鍍法製作氧化鋁鋅釔薄膜電晶體
Manufacturing AZOY-based thin film transistors with RF-sputtering
指導教授: 吳孟奇
Wu, Meng-Chyi
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 56
中文關鍵詞: 氧化鋁鋅釔薄膜電晶體射頻濺鍍法
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 薄膜電晶體是最早被發明的場效電晶體,原本被期望可以取代真空管應用於電算基中,但是後來被性能更優越的金屬-氧化物-半導體場效電晶體的出現而逐漸被取代,直到新的應用的出現才又受到重視,這個新應用主要是作為液晶顯示面板中畫素的切換開關,尤其是大尺寸的顯示面板當中更顯得重要。
    金屬氧化物電晶體具有成本低、製程溫度低、製程簡單、透明度及可撓度高等優點。目前文獻中,氧化鋁鋅大多作為電極的材料,尚未有以氧化鋁鋅為薄膜電晶體之半導體層之研究。
    本論文中,使用射頻濺鍍法,成功實現低成本之氧化鋁鋅釔薄膜電晶體。透過不同製程參數,包含半導體層厚度、製程間通氧流量、通道長度以及製程間基板溫度等,針對其對薄膜電晶體的特性影響做一連串探討研究。


    The thin-film transistor (TFT) is the first field-effect transistor, and it was expected to substitute for the vacuum tube applied in the computer. But the TFT was replaced gradually by the Metal-oxide-semiconductor field-effect transistor which has superior performance. The TFT was not paid much attention until the appearance of new application, which was the switch of pixels in LCDs, it was important especially LCDs with large size.
    The metal-oxide-based TFT has advantages of low cost, low temperature in process, few steps in process, high transparency, and high flexibility. All the aluminum zinc oxide (AZO) reported in the oxide based TFTs literature to date are used as electrode layers. There are no reports available in the literature on AZO based TFTs.
    In this thesis, the low cost device of thin film transistors have been fabricated by RF sputtering. We investigate the effect of processing parameters, including channel thickness, processing O2/Ar ratio, channel length,and processing substrate temperature, on the performance of TFTs.

    摘 要 ABSTRACT 誌 謝 CONTENTS FIGURE CAPTIONS Chapter 1: Introduction 1-1 General overview of TFTs and Motivation 1 1-2 Experimental details 4 1-2-1 RF Sputtering 4 1-2-2 Atomic Force Microscopy 5 1-2-3 The Parameters Extraction of Thin Film Transistors 6 1-3 Transmission spectra of AZOY thin films 8 Chapter 2: Dependence of channel thickness on the performance of AZOY thin film transistors 2-1 Experiment 17 2-2 Results and discussion 18 2-3 Conclusion 20 Chapter 3: Dependence of O2/Ar ratio during sputtering on the performance of AZOY thin film transistors 3-1 Experiment 30 3-2 Results and discussion 31 3-3 Conclusion 32 Chapter 4: Dependence of channel length on the performance of AZOY thin film transistors 4-1 Experiment 38 4-2 Results and discussion 38 4-3 Conclusion 39 Chapter 5: Dependence of substrate temperature on the performance of AZOY thin film transistors 5-1 Experiment 44 5-2 Results and discussion 44 5-3 Conclusion 45 Chapter 6: Conclusions and future work 6-1 Conclusion 51 6-2 Future work 52 References Reference 53

    [1] Snell, A. J., Mackenzie, K. D., Spear, W. E., LeComber, P. G. & Hughes, A. J. Application of amorphous silicon field effect transistors in addressable liquid crystal display panels. Appl. Phys. Lett. 24, 357–362 (1981)
    [2] Madelung, O. (ed.) Technology and Applications of Amorphous Silicon (Springer, Berlin, 2000).
    [3] Ucjikoga, S. Low-temperature polycrystalline silicon thin-film transistor technologies for systemonglass displays. MRS Bull. 27, 881–886 (2002).
    [4] R. E. Presley, D. Hong, H. Q. Chang, C. M. Hung, R. L. Hoffman, and J. F. Wager, Solid-State Electron. 50, 500 (2006).
    [5] Seongpil Chang, Yong-Won Song, Sanggyu Lee, Sang Yeol Lee, and Byeong-Kwon Ju, APPLIED PHYSICS LETTERS 92, 192104 (2008)
    [6] Burag Yaglioglu, Hyo-Young Yeom, and David C. Paine, APPLIED PHYSICS LETTERS 86, 261908 (2005)
    [7] B. S. Ong, C. Li, Y. Li, Y. Wu, and R. Loutfy, J. Am. Chem. Soc. 129, 2750 (2007).
    [8] Y. L. Wang, Appl. Phys. Lett. 90, 232103 (2007).
    [9] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano and H. Hosono, Nature 432, 488 (2004).
    [10] T. Iwasaki, N. Itagaki, T. Den, and H. Kumomi, Appl. Phys. Lett. 90, 242114 (2007).
    [11] Thomas G 1997 Nature 389 907
    [12] Hosono H 2007 Thin Solid Films 515 6000
    [13] Hideki Tanaka, Takahiro Shimakawa, Toshihiro Miyata, Hirotoshi Sato,Tadatsugu Minami, Thin Solid Films 469–470 (2004)
    [14] Shingo Suzuki, Toshihiro Miyata, Makoto Ishii, Tadatsugu Minami, Thin Solid Films 434 (2003)
    [15] Tadatsugu Minami, Shingo Suzuki, Toshihiro Miyata, Thin Solid Films 398 –399 (2001)
    [16] Hyo Jun Park, Jin-woo Park, Se-young Jeong, Chang-sik Ha, Proceedings of the IEEE, Vol. 93, No. 8 (2005)
    [17] Seong Hun Jeong, Bit Na Park, Dong-Geun Yoo, Jin-Hyo Boo, Journal of the Korean Physical Society, Vol. 50, No. 3 (2007)
    [18] Teruhisa Ootsuka, Zhengxin Liu, Masato Osamura, Yasuhiro Fukuzawa, Ryo Kuroda, Yasuhito Suzuki, Naotaka Otogawa, Takahiro Mise, Shinan Wang, Yasushi Hoshino, Yasuhiko Nakayama, Hisao Tanoue, Yunosuke Makita, Thin Solid Films 476 (2005)
    [19] G. Xiong, J. Wilkinson, B. Mischuck, S. Tuzemen, K. B. Ucer, and R. T. Williams, Appl. Phys. Lett. 80, 1195 2002.
    [20] K. B. Sundaram and A. Khan, Thin Solid Films 295, 87 1997.
    [21] A. Suresh, P. Wellenius, A. Dhawan, and J. Muth, Appl. Phys. Lett. 90,
    123512 2007.
    [22] M. Purica, E. Budianu, E. Rusu, M. Danila, and R. Gavrila, Thin Solid Films 403, 485 2002.
    [23] Wang L, Yoon M-H, Lu G, Yang Y, Facchetti A and Marks T J 2006 Nature Mater. 5 893
    [24] 大同大學光電研究所碩士論文
    射頻磁控濺鍍法沉積氧化鎂薄膜應用於二次電子放大特性之研究 蘇泰維(2005).
    [25] 國立海洋大學材料工程研究所碩士論文
    含不互溶鎢之銅薄膜濺鍍合成與性質分析研究 劉啟人 (2000).
    [26] D. Sarid, Scanning Force Microscopy, Oxford Series in Optical and Imaging Sciences, Oxford University Press, New York (1991)
    [27] J.F. Chang, M.H. Hon, Thin Solid Films 386 (2001)
    [28] Min-Jong Keum, Bum-Jin Cho, Hyung-wook Choi, Sang-Joon Parka and Kyung-Hwan Kim, Journal of Ceramic Processing Research. Vol. 8, No. 1, pp. 56~58 (2007)
    [29] V. J. Morris, A. R. Kirby, A. P. Gunning, Atomic Force Microscopy for Biologists. (Book) (December 1999) Imperial College Press
    [30] Hsieh H-H and Wu C-C 2007 Appl. Phys. Lett. 91 013502
    [31] Jin-Seong Park, Jae Kyeong Jeong, Yeon-Gon Mo, Hye Dong Kim, and Chang-Jung Kim, Appl. Phys. Lett. 93, 033513 (2008)
    [32] D. H. Cho, S. Yang, C. Byun, J. Shin, and M. K. Ryu, Appl. Phys. Lett. 93, 142111 (2008).
    [33] Liang Zhang, Hao Zhang, Yu Bai, Jun Wei Ma, Jin Cao, XueYin Jiang, Zhi Lin Zhang, Solid State Communications 146 (2008)
    [34] Iwasaki T, Itagaki N, Den T, Kumomi H, Nomura K, Kamiya T and Hosono H Appl. Phys. Lett. 90 242114 (2007)
    [35] Deman A-L and Tardy J Org. Electron. 6 78 (2005)
    [36] Kuwahara E, Kusai H, Nagano T, Takayanagi T and Kubozono Y Chem. Phys. Lett. 413 379 (2005)
    [37] Han-Chang Pan, Ming-Hua Shiao, Chien-Ying Su, and Chien-Nan Hsiao,
    Appl. Phys. Lett. 90, 212114 (2007)
    [38] H. W. Kim, S. K. Jung, J. S. Ahn, Y. J. Kang, and K. C. Je, Jpn. J. Appl.
    Phys., Part 1 42, 223 (2003)
    [39] Minkyu Kim, Jong Han Jeong, Hun Jung Lee, Tae Kyung Ahn, Hyun Soo
    Shin, Jin-Seong Park, Jae Kyeong Jeong, Yeon-Gon Mo, and Hye Dong
    Kim, Applied Physics Letters 90, 212114 (2007)
    [40] Ayumu Sato, Katsumi Abe, Ryo Hayashi, Hideya Kumomi, Kenji Nomura, Toshio Kamiya, Masahiro Hirano, and Hideo Hosono, Applied Physics Letters 94, 133502 (2009)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE