簡易檢索 / 詳目顯示

研究生: 陳永祥
Chen, Yong-Siang
論文名稱: A Compressive Sampling Framework for Electromyogram and Electroencephalogram
基於壓縮感測之肌電和腦波訊號壓縮方法
指導教授: 馬席彬
Ma, Hsi-Pin
口試委員: 汪重光
許騰尹
楊家驤
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 100
語文別: 英文
論文頁數: 72
中文關鍵詞: 壓縮感知肌電訊號壓縮腦波訊號壓縮
外文關鍵詞: Compressive sampling, EMG and EEG compression, Compressive sampling matching pursuit
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Compressive sampling is an emerging technique for developing data sampling in recent years. In this paper, we propose the architecture of compressive sampling for electroencephalogram (EEG) and electromyogram (EMG) signals in the telemedicine sensor network. In order to save the area of hardware in encoding-end, the sensing matrix must be simple. And the decoding algorithms require the medium computational complexity under the trade-off between the reconstructed error and the speed of convergence. Accordingly, we propose the modified compressive sampling matching pursuit (MCoSaMP) and multiple domains decoding method to enhance the performance. This proposed architecture is composed of Bernoulli matrix in encoding-end, Daubechies-4 (DB-4) for EMG signals (DCT for EEG signals), and MCoSaMP algorithm with multiple domains decoding method in decoding-end. The proposed architecture for EEG signals can reduce the percentage root mean square difference (PRD) by 17% compared to other papers. And then the compression ratio (CR) can be achieved 0.4 with PRD 9.1%. Moreover, the CR can be achieved 0.4 with PRD 21.3% for EMG signals. The MCoSaMP with multiple domains decoding method can achieve the almost same PRD with convex optimization for EMG signals. And the complexity can be reduced from O(N^3.5) to O( m^3/(log(N))^2 ), where m and N are the number of measurement and length of signal, respectively. Although the PRD of proposed architecture for EMG signals is 6% larger than traditional EMG compression method, the complexity of proposed method in encoding-end is much lower than it. That achieves the goal of low complexity in encoding-end in telemedicine sensor network.


    近年來,人們對於遠程醫療的需求越來越重視,因此如何有效在資料量傳遞方面達到節省以及編碼端如何低複雜度成了重要的議題,本篇論文利用近年來新起的技術壓縮感測來達到資料壓縮的目的,但由於利用壓縮感測處理EEG訊號已有文獻探討,因此本篇論文著重於EMG訊號。

    我們利用壓縮感測理論設計出適用於EMG和EEG訊號的壓縮以及解壓縮的架構,在編碼端的部分採用複雜度較低的Bernoulli matrix,在解碼端的部分尋找稀疏性較好的基底如: DCT、DFT、DHWT和DB-4,解壓縮的演算法使用複雜度較低精確度較好的CoSaMP (Compressive Sampling Matching Pursuit),針對此演算法進行改良,並且提出multiple domains decoding method,使用兩個基底以達到誤差相抵銷的結果,使得解壓縮後的誤差比起原本單使用CoSaMP演算法更小。

    利用PhysioNet以及NTHU cMEA Lab所提供的EMG和EEG訊號進行模擬,結果明確指出在EMG訊號方面我們提出的方式可以比單使用CoSaMP的PRD小9%,而在EEG方面,與其他文獻相比,我們提出的方法可以降低PRD 17%。最後與傳統 EMG壓縮方法相比,儘管解壓縮端部分複雜度大於傳統壓縮方式,但是編碼端複雜度利用壓縮感測的方式可以遠低於傳統壓縮方式,如此一來可以達到編碼端低複雜度的需求。

    Abstract i 1 Introduction 1 1.1 Backgrounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Compressive Sampling . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.2 Traditional Compression for Electromyogram . . . . . . . . . . . . . 4 1.2 Motivation of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Organization of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Review of Compressive Sampling Theory and Its Applications 7 2.1 Sparse and Compressible Signals . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Incoherence Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 Undersampling and Sparse Signal Recovery . . . . . . . . . . . . . . . . . . 10 2.4 Robustness of Compressive Sampling . . . . . . . . . . . . . . . . . . . . . 13 2.5 Applications of Compressive Sampling . . . . . . . . . . . . . . . . . . . . 16 3 Signals Recovery Algorithms in Compressive Sampling 19 3.1 Overview of Recovery Algorithms . . . . . . . . . . . . . . . . . . . . . . . 19 3.2 Orthogonal Matching Pursuit Algorithm . . . . . . . . . . . . . . . . . . . . 21 3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2.2 Description of Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 22 3.3 Compressive Sampling Matching Pursuit Algorithm . . . . . . . . . . . . . . 24 3.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.3.2 Description of Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 24 3.3.3 Error Reduction Bound and Halting Criterion . . . . . . . . . . . . . 27 3.3.4 Lu’s Compressive Sampling Matching Pursuit Algorithm . . . . . . . 29 3.4 Interior-Point Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.5 Comparison of Relative Theoretical Performance . . . . . . . . . . . . . . . 32 4 Architecture of Compressive Sampling for EEG and EMG Signals 35 4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.2 Sparse Bases of EEG and EMG Signals . . . . . . . . . . . . . . . . . . . . 36 4.2.1 DFT and DCT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.2.2 Discrete Wavelet Transform . . . . . . . . . . . . . . . . . . . . . . 38 4.2.3 Multiple Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.3 Proposed Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.3.1 Sensing Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.3.2 Decision of Decoding Algorithms . . . . . . . . . . . . . . . . . . . 45 5 Simulation Results and Comparisons 51 5.1 Variant Sparse Bases Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.1.1 Performance Metrics and Sparse Evaluation . . . . . . . . . . . . . . 51 5.1.2 Electromyogram (EMG) . . . . . . . . . . . . . . . . . . . . . . . . 52 5.1.3 Electroencephalogram (EEG) . . . . . . . . . . . . . . . . . . . . . 57 5.2 Power Spectrum Density Analysis . . . . . . . . . . . . . . . . . . . . . . . 62 6 Conclusion 67 6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 6.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

    [1] A. Guerrero and C. Mailhes, “On The Choice of An Electromyogram Data Compression
    Method,” in Proc. IEEE EMBS ’97, vol. 4, Oct 1997, pp. 1558 –1561 vol.4.
    [2] Y. Wang, A. Bermak, and F. Boussaid, “FPGA Implementation of Compressive Sam-
    pling for Sensor Network Applications,” in Proc. ASQED ’10, 2010, pp. 5 –8.
    [3] L. Merino and L. Mendoza, “Robust Compression Using Compressive Sensing (CS),”
    in Proc. ANDESCON ’10, 2010, pp. 1 –7.
    [4] E. Candes and M. Wakin, “An Introduction to Compressive Sampling,” IEEE Signal
    Process. Mag., vol. 25, no. 2, pp. 21 –30, March 2008.
    [5] E. Candes and T. Tao, “Decoding by Linear Programming,” IEEE Trans. Inf. Theory,
    vol. 51, no. 12, pp. 4203 – 4215, Dec. 2005.
    [6] S. Cotter and B. Rao, “Matching Pursuit Based Decision-Feedback Equalizers,” in Proc.
    IEEE ICASS ’10, vol. 5, 2010, pp. 2713 –2716.
    [7] Y. Pati, R. Rezaiifar, and P. Krishnaprasad, “Orthogonal Matching Pursuit: Recursive
    Function Approximation with Applications toWavelet decomposition,” in Proc. Signals,
    Systems and Computers, vol. 1, Nov. 1993, pp. 40 –44.
    [8] J. Norris and D. Lovely, “Real-Time Compression of Myoelectric Data Utilizing Adap-
    tive Differential Pulse Code Modulation,” Med. Biol. Eng. Comput., vol. 33, pp. 629–635, 1995.
    [9] P. Wellig, Z. Cheng, M. Semling, and G. Moschytz, “Electromyogram Data Compres-
    sion Using Single-Tree and Modified Zero-Tree Wavelet Encoding,” in Proc. IEEE
    EMBS ’98, vol. 3, Oct. 1998, pp. 1303 –1306 vol.3.
    [10] J. Norris, K. Englehart, and D. Lovely, “Steady-State and Dynamic Myoelectric Signal
    Compression Using Embedded Zero-Tree Wavelets,” in Proc. IEEE EMBS ’01, vol. 2,
    2001, pp. 1879 – 1882.
    [11] P. Berger, F. Nascimento, J. Carmo, and A. da Rocha, “Compression of EMG Signals
    with Wavelet Transform and Artificial Neural Networks,” in Proc. Physiological Mea-
    surement, vol. 27, 2006, pp. 457 –465.
    [12] A. de Berger, F. de Nascimento, A. da Rocha, and J. Carvalho, “A New Wavelet-Based
    Algorithm for Compression of Emg Signals,” in Proc. IEEE EMBS ’07, Aug. 2007, pp.
    1554 –1557.
    [13] D. Needell and J. Tropp, “CoSaMP: Iterative Signal Recovery from Incomplete and
    Inaccurate Samples,” Information Theory and Applicaions, Jan. 2008.
    [14] D. Donoho, “Compressed Sensing,” IEEE Trans. Inf. Theory, vol. 52, no. 4, pp. 1289
    –1306, April 2006.
    [15] R. Coifman, F. Geshwind, and Y. Meyer, “Noiselets,” Applied and Computational
    Harmonic Analysis, vol. 10, no. 1, pp. 27 – 44, 2001. [Online]. Available:
    http://www.sciencedirect.com/science/article/pii/S1063520300903130
    [16] R. Baraniuk, “Compressive Sensing [Lecture Notes],” IEEE Signal Processing Mag.,
    vol. 24, no. 4, pp. 118 –121, July 2007.
    [17] G. Zhang, S. Jiao, X. Xu, and L. Wang, “Compressed Sensing and Reconstruction with
    Bernoulli Matrices,” in Proc. ICIA ’10, June 2010, pp. 455 –460.
    [18] D. Donoho and P. Stark, “Uncertainty Principles and Signal Recovery,” SIAM Journal
    on Applied Mathematics, vol. 49, no. 3, pp. pp. 906–931, 1989. [Online]. Available:
    http://www.jstor.org/stable/2101993
    [19] “Restricted Isometry Constant.” [Online]. Available:
    http://ecos.maths.ed.ac.uk/ric bounds.shtml
    [20] E. J. Candes, J. K. Romberg, and T. Tao, “Stable Signal Recovery from Incomplete and
    Inaccurate Measurements,” Communications on Pure and Applied Mathematics, vol. 59,
    no. 8, pp. 1207–1223, 2006. [Online]. Available: http://dx.doi.org/10.1002/cpa.20124
    [21] R. Tibshirani, “Regression Shrinkage and Selection via the Lasso,” Royal Sta-
    tistical Society, vol. 58, no. 1, pp. pp. 267–288, 1996. [Online]. Available:
    http://www.jstor.org/stable/2346178
    [22] D. Baron, M. Wakin, M. Duarte, S. Sarvotham, and R. Baraniuk, “Distributed Com-
    pressed Sensing,” Preprint, 2005.
    [23] M. Lustig, D. Donoho, and J. Pauly, “Rapid MR Imaging with Compressed Sensing and
    Randomly Under-Sampled 3DFT Trajectories,” ISMRM, 2006.
    [24] X. Wang, Z. Zhao, N. Zhao, and H. Zhang, “On the Application of Compressed Sensing
    in Communication Networks,” in Proc. ICST CHINACOM ’10, Aug. 2010, pp. 1 –7.
    [25] C. Luo, F. Wu, J. Sun, and C. W. Chen, “Compressive Data Gathering
    for Large-scale Wireless Sensor Networks,” in Proc. IMobiCom, ser. MobiCom
    ’09. New York, NY, USA: ACM, 2009, pp. 145–156. [Online]. Available:
    http://doi.acm.org/10.1145/1614320.1614337
    [26] S. Mallat and Z. Zhang, “Matching Pursuits with Time-Frequency Dictionaries,” IEEE
    Trans. Signal Process., vol. 41, no. 12, pp. 3397 –3415, Dec 1993.
    [27] J. Tropp and A. Gilbert, “Signal Recovery From Random Measurements Via Orthogonal
    Matching Pursuit,” IEEE Trans. Inf. Theory, vol. 53, no. 12, pp. 4655 –4666, Dec. 2007.
    [28] D. Donoho, Y. Tsaig, I. Drori, and J. Starck, Sparse Solution of Underdetermined Linear
    Equations by Stagewise Orthogonal Matching Pursuit (StOMP), submitted for publica-
    tion, Mar. 2006.
    [29] D. Needell and R. Vershynin, “Signal Recovery From Incomplete and Inaccurate Mea-
    surements Via Regularized Orthogonal Matching Pursuit,” IEEE J. Sel. Topics Signal
    Process., vol. 4, no. 2, pp. 310 –316, April 2010.
    [30] D. Needell and J. Tropp, “CoSaMP: Iterative Signal Recovery from Incomplete and
    Inaccurate Samples,” Applied and Computational Harmonic Analysis, vol. 26, no. 3, pp.
    301 – 321, 2009.
    [31] J. Lu, H. Zhang, and H. Meng, “Novel Hardware Architecture of Sparse Recovery Based
    on FPGAs,” in Signal Process. Syst. (ICSPS), vol. 1, July 2010, pp. 302 –306.
    [32] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge Univ. Press, 2004.
    [33] G. Moody, R. Mark, and A. Goldberger, “PhysioNet: A Research Resource for Studies
    of Complex Physiologic and Biomedical Signals,” in Computers in Cardiology, 2000,
    pp. 179 –182.
    [34] P. Ele, P. Ntsama, and E. Tonye, “Modified Lifting Scheme Characterization for the
    Compression of EMG Signals,” in Conf. SITIS ’09, Dec. 2009, pp. 73 –80.
    [35] A. Abdulghani, A. Casson, and E. Rodriguez-Villegas, “Quantifying The Performance
    of Compressive Sensing on Scalp EEG signals,” in Proc. ISABEL ’10, Nov. 2010, pp. 1
    –5.
    [36] S. Aviyente, “Compressed sensing framework for eeg compression,” in Statistical Signal
    Processing, 2007. SSP ’07. IEEE/SP 14th Workshop on, 2007, pp. 181 –184.
    [37] A. Pogosyan, F. Yoshida, C. Chen, I. Martinez-Torres, T. Foltynie, P. Limousin,
    L. Zrinzo, M. Hariz, and P. Brown, “Parkinsonian Impairment Correlates with Spatially
    Extensive Subthalamic Oscillatory Synchronization,” Neuroscience, vol. 171, no. 1, pp.
    245 – 257, 2010.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE