簡易檢索 / 詳目顯示

研究生: 彭皓楷
Peng, Hao-Kai
論文名稱: 以介面工程改善鐵電氧化鉿鋯記憶體之可靠度表現
Improved Reliability of Ferroelectric HfZrOx-based Memory With Interface Engineering
指導教授: 巫勇賢
Wu, Yung-Hsien
口試委員: 張廖貴術
Chang Liao, Kuei-Shu
吳永俊
Wu, Yung-Chun
荊鳳德
Chin, Albert
蘇俊榮
Su, Chun-Jung
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 168
中文關鍵詞: 鐵電性氧化鉿鋯鐵電電容鐵電電晶體P型通道極化電流峰分裂一階反轉曲線可靠度多位元儲存微波退火
外文關鍵詞: Ferroelectricity, HfZrO, FeCap, FeFET, P-Channel, Switching Current Split-Up, FORC, Reliability, Multi-Level Cell, Microwave Annealing
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鐵電記憶體由於具備寫入速度快和低消耗功率等特性,為前瞻性新興記憶體技術之一,有利於彌補現有記憶體階層中,高速DRAM 和非揮發性Flash之間的差異。近年來,CMOS製程相容之鐵電氧化鉿鋯(HfZrOx)已成功製作成鐵電電容器、鐵電穿隧接面以及鐵電電晶體等各種類型的鐵電記憶體以適合不同應用,非揮發性、出色的微縮能力和多位元儲存能力亦有利於作為高密度儲存。然而,反覆寫入-抹除後所產生的電荷捕捉效應將抵消這些優勢,造成寫入後讀取延遲增加以及記憶視窗降低。另外,鐵電電容器與鐵電電晶體在喚醒和子循環過程,鐵電疇去釘扎和釘扎亦會影響多位元儲存穩定性。
    本論文首先著重研究高介電常數之氮氧化鋁介面層對鐵電電晶體性能影響,與採用二氧化矽介面層元件相比,由於氮氧化鋁具有較大的介電常數以及價帶位能差(valence band offset),有助於提升鐵電電晶體之記憶視窗、資料維持性與耐久度。若進一步以氮氧化鋁介面層搭配鐵電層厚度微縮,可降低n通道與p通道鐵電電晶體記憶視窗差異,有利於實現記憶體內邏輯(logic-in-memory)相關應用。此外,具有氮氧化鋁介面層的p通道鐵電電晶體,在經過高累積輻射劑量照射後,仍可維持低寫入後讀取延遲能力,顯示此種結構的鐵電記憶體亦具有良好的抗輻射能力。接著,本論文亦探討鐵電電晶體操作在多位元儲存之可靠度表現,透過同時量測臨界電壓(threshold voltage)以及切換電流(switching current),證實以氨氣電漿對矽基板表面進行預處理,可抑制鐵電電晶體操作在子循環後的局部釘扎效應。最後,我們提出一種可用於鍺鐵電電晶體的混合退火方案,透過微波退火搭配快速熱退火,大幅減少鍺基板與鐵電層介面之缺陷密度,使其不僅具有大記憶視窗可用於多位元儲存,亦改善了可靠度,為下世代鍺鐵電電晶體開創新契機。


    Ferroelectric memory is one of the promising emerging memory technologies due to its fast write speed and low power consumption. It provides an opportunity to bridge the gap between high-speed DRAM and non-volatile Flash in the current memory hierarchy. In recent years, CMOS-compatible ferroelectric HfZrOx has been successfully integrated with various types of ferroelectric memories such as ferroelectric capacitor (FeCap), ferroelectric tunneling junction (FTJ), and ferroelectric FET (FeFET) for versatile applications. The non-volatile characteristic, excellent scalability, and multi-level cell (MLC) capability of these devices are beneficial for high-density storage. However, charge trapping, which can occur after repeatedly programming and erasing, counteracts these advantages. It not only increases the read-after-write latency but also degrades the memory window (MW). In addition, the MLC stability is associated with the domain de-pinning and pining during wake-up and sub-cycling for FeCap and FeFET.
    This dissertation first focuses on the impact of the high-k AlON interfacial layer (IL) on the performance of FeFETs. Compared to SiO2 IL, AlON IL possesses a larger dielectric constant and valence band offset, which helps improve the memory window, data retention, and endurance of FeFETs. Using an AlON IL in combination with reduced ferroelectric layer thickness can further alleviate the MW discrepancy between n-channel and p-channel FeFETs, thereby facilitating logic-in-memory applications. In addition, p-channel FeFETs with AlON IL retain low read-after-write latency after being exposure to high radiation doses, indicating excellent radiation tolerance of this structure as well. Next, the MLC performance of FeFETs is also evaluated by simultaneously measuring the threshold voltage and switching current. It is confirmed that the Si surface with NH3 plasma treatment can suppress the local domain pinning of FeFETs after being subjected to sub-cycling. Finally, a novel hybrid annealing scheme is proposed for Ge-based FeFETs, which combines microwave annealing with rapid thermal annealing, to significantly reduce the defect density at the interface between Ge substrates and the ferroelectric layer. This not only enables large MW and MLC applications but also improves the reliability performance, which opens a new avenue for next-generation Ge-based FeFETs.

    摘要 i Abstract ii 致謝 iv Contents vi Figure Captions x Table Lists xix Chapter 1 Introduction 1 1-1 Brief Introduction of Ferroelectric Memory 1 1-1-1 Background 1 1-1-2 Doped-HfO2 Ferroelectric Memory 1 1-2 Realization of Truly Fast NVM 4 1-2-1 Write Speed Fluctuation 4 1-2-2 Read-After-Write Latency 5 1-3 Instability of MLC Operation 6 1-3-1 Charge Trapping Induced MW Degradation 7 1-3-2 Split-Up Effect Induced Instability 7 1-4 Organization of the Thesis 8 1-5 References 11 Chapter 2 Large Memory Window for FeFET Memory 22 2-1 Introduction 22 2-2 Experimental 24 2-3 Results and Discussion 25 2-3-1 Physical Analysis 25 2-3-2 Characterization of Ferroelectricity on Various IL 26 2-3-3 Impact of Various IL on MW of FeFETs 27 2-3-4 Impact of Various IL on Endurance Performance 27 2-3-5 Impact of Various IL on Retention Performance 30 2-4 Summary 31 2-5 References 32 Chapter 3 Symmetrical Memory Window Between n- and p-FeFETs 42 3-1 Introduction 42 3-2 Experimental 44 3-3 Results and Discussion 45 3-3-1 Memory Window for n- and p-FeFETs 45 3-3-2 Reliability Performance for n- and p-FeFETs 47 3-4 Summary 49 3-5 References 50 Chapter 4 Radiation Hardened FeFET with Improved Read Latency 58 4-1 Introduction 58 4-2 Experimental 60 4-3 Results and Discussion 60 4-4 Summary 65 4-5 References 65 Chapter 5 Enhanced Reliability of FeCap on Epitaxial Ge Film 73 5-1 Introduction 73 5-2 Experimental 75 5-3 Results and Discussion 76 5-3-1 Reliability and Physical Analyses of STD-based Devices 76 5-3-2 Reliability and Physical Analyses of AlON-based Devices 82 5-4 Summary 88 5-5 References 89 Chapter 6 Improved MLC Performance for BEOL Compatible FeCap 103 6-1 Introduction 103 6-2 Experimental 105 6-3 Results and Discussion 106 6-3-1 Impact of Processes on Ferroelectric Characteristics 106 6-3-2 Highly Reliable 3 Bits/Cell Operation for PDA-Stack 107 6-4 Summary 109 6-5 References 110 Chapter 7 Investigation of Sub-Cycling Induced Instability of FeFET 124 7-1 Introduction 124 7-2 Experimental 126 7-3 Results and Discussion 126 7-3-1 Basic Characteristics of HZO Layers 126 7-3-2 Impact of NH3 Treatment on Sub-Cycling Behavior 128 7-3-3 Multibit Capability of FeFET with NH3 Plasma Treatment 129 7-4 Summary 130 7-5 References 131 Chapter 8 Demonstration of MLC Capability on Ge FeFET Memory 145 8-1 Introduction 145 8-2 Experimental 146 8-3 Results and Discussion 148 8-3-1 Impact of Annealing Scheme on Properties of FE Film 148 8-3-2 Memory Performance, Reliability, and TLC Operation 149 8-4 Summary 151 8-5 References 152 Chapter 9 Conclusions and Recommendations 162 9-1 Conclusions 162 9-2 Recommendations 164 Publication List 166

    Chapter 1
    [1.1] J. Valasek, "Piezo-electric and allied phenomena in rochelle salt," Physical Review, vol. 17, no. 4, pp. 475-481, 1921.
    [1.2] D. A. Buck., "Ferroelectrics for digital information storage and switching," Master, Massachusetts institute of technology, 1952.
    [1.3] W. Kraus, L. Lehman, D. Wilson, T. Yamazaki, C. Ohno, E. Nagai, H. Tamazaki, and H. Suzuki, "A 42.5 mm2 1 Mb nonvolatile ferroelectric memory utilizing advanced architecture for enhanced reliability," in 1998 Symposium on VLSI Circuits. Digest of Technical Papers (Cat. No.98CH36215), 1998, pp. 242-245.
    [1.4] D. Takashima, S. Shuto, I. Kunishima, H. Takenaka, Y. Oowaki, and S. Tanaka, "A sub-40 ns random-access chain FRAM architecture with a 768 cell-plate-line drive," in 1999 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. ISSCC. First Edition (Cat. No.99CH36278), 1999, pp. 102-103.
    [1.5] C. Yeonbae, C. Mun-Kyu, O. Seung-Kyu, J. Byung-Gil, and S. Kang-Deog, "A 3.3-V 4-Mb nonvolatile ferroelectric RAM with a selectively-driven double-pulsed plate read/write-back scheme," in 1999 Symposium on VLSI Circuits. Digest of Papers (IEEE Cat. No.99CH36326), 1999, pp. 97-98.
    [1.6] J. Müller, T. S. Böscke, D. Bräuhaus, U. Schröder, U. Böttger, J. Sundqvist, P. Kücher, T. Mikolajick, and L. Frey, "Ferroelectric Zr0.5Hf0.5O2 thin films for nonvolatile memory applications," Applied Physics Letters, vol. 99, no. 11, p. 112901, 2011.
    [1.7] Q. Luo, Y. Cheng, J. Yang, R. Cao, H. Ma, Y. Yang, R. Huang, W. Wei, Y. Zheng, T. Gong, J. Yu, X. Xu, P. Yuan, X. Li, L. Tai, H. Yu, D. Shang, Q. Liu, B. Yu, Q. Ren, H. Lv, and M. Liu, "A highly CMOS compatible hafnia-based ferroelectric diode," Nature Communications, vol. 11, no. 1, p. 1391, 2020.
    [1.8] M. H. Park, Y. H. Lee, T. Mikolajick, U. Schroeder, and C. S. Hwang, "Thermodynamic and kinetic origins of ferroelectricity in fluorite structure oxides," Advanced Electronic Materials, vol. 5, no. 3, p. 1800522, 2019.
    [1.9] Y.-C. Kao, H.-K. Peng, Y.-K. Wang, K.-A. Wu, C.-Y. Wang, Y.-D. Lin, T.-C. Lai, Y.-H. Wu, C.-Y. Lin, S.-W. Hsiao, M.-H. Lee, and P.-J. Wu, "Toward highly pure ferroelectric Hf1–xZrxO2 thin films by tailoring the strain in an unstable thermodynamic system," ACS Applied Electronic Materials, vol. 4, no. 8, pp. 3897-3908, 2022.
    [1.10] M. H. Park, Y. H. Lee, H. J. Kim, Y. J. Kim, T. Moon, K. D. Kim, J. Müller, A. Kersch, U. Schroeder, T. Mikolajick, and C. S. Hwang, "Ferroelectricity and Antiferroelectricity of doped thin HfO2-based films," Advanced Materials, vol. 27, no. 11, pp. 1811-1831, 2015.
    [1.11] C. Richter, T. Schenk, M. H. Park, F. A. Tscharntke, E. D. Grimley, J. M. LeBeau, C. Zhou, C. M. Fancher, J. L. Jones, T. Mikolajick, and U. Schroeder, "Si doped hafnium oxide—A “fragile” ferroelectric system," Advanced Electronic Materials, vol. 3, no. 10, p. 1700131, 2017.
    [1.12] X. Liu, L. Yao, Y. Cheng, and B. Xiao, "High annealing temperature assisted broadening of the ferroelectric concentration window in Al:HfO2 MFS structures," Japanese Journal of Applied Physics, vol. 58, no. 9, p. 090903, 2019.
    [1.13] S. J. Kim, D. Narayan, J.-G. Lee, J. Mohan, J. S. Lee, J. Lee, H. S. Kim, Y.-C. Byun, A. T. Lucero, C. D. Young, S. R. Summerfelt, T. San, L. Colombo, and J. Kim, "Large ferroelectric polarization of TiN/Hf0.5Zr0.5O2/TiN capacitors due to stress-induced crystallization at low thermal budget," Applied Physics Letters, vol. 111, no. 24, p. 242901, 2017.
    [1.14] S. J. Kim, J. Mohan, J. Lee, J. S. Lee, A. T. Lucero, C. D. Young, L. Colombo, S. R. Summerfelt, T. San, and J. Kim, "Effect of film thickness on the ferroelectric and dielectric properties of low-temperature (400 °C) Hf0.5Zr0.5O2 films," Applied Physics Letters, vol. 112, no. 17, p. 172902, 2018.
    [1.15] D. Lehninger, R. Olivo, T. Ali, M. Lederer, T. Kämpfe, C. Mart, K. Biedermann, K. Kühnel, L. Roy, M. Kalkani, and K. Seidel, "Back-end-of-line compatible low-temperature furnace anneal for ferroelectric hafnium zirconium oxide formation," physica status solidi (a), vol. 217, no. 8, p. 1900840, 2020.
    [1.16] J. Hur, Y. C. Luo, N. Tasneem, A. I. Khan, and S. Yu, "Ferroelectric hafnium zirconium oxide compatible with back-end-of-line process," IEEE Transactions on Electron Devices, vol. 68, no. 7, pp. 3176-3180, 2021.
    [1.17] Y. C. Jung, J.-H. Kim, H. Hernandez-Arriaga, J. Mohan, S. M. Hwang, D. N. Le, A. Sahota, H. S. Kim, K. Kim, R. Choi, C.-Y. Nam, D. Alvarez, J. Spiegelman, S. J. Kim, and J. Kim, "Robust low-temperature (350 °C) ferroelectric Hf0.5Zr0.5O2 fabricated using anhydrous H2O2 as the ALD oxidant," Applied Physics Letters, vol. 121, no. 22, p. 222901, 2022.
    [1.18] H. K. Peng, T. C. Lai, Y. C. Kao, C. M. Liu, P. J. Wu, and Y. H. Wu, "Improved Reliability for back-end-of-line compatible ferroelectric capacitor with 3 bits/cell storage capability by interface engineering and post deposition annealing," IEEE Electron Device Letters, vol. 43, no. 12, pp. 2180-2183, 2022.
    [1.19] G. Tian, G. Xu, H. Yin, G. Yan, Z. Zhang, L. Li, X. Sun, J. Chen, Y. Zhang, J. Bi, J. Xiang, J. Liu, Z. Wu, J. Luo, and W. Wang, "Improved ferroelectricity and endurance of Hf0.5Zr0.5O2 thin films in low thermal budget with novel bottom electrode doping technology," Advanced Materials Interfaces, vol. 9, no. 24, p. 2102351, 2022.
    [1.20] W. Xiao, C. Liu, Y. Peng, S. Zheng, Q. Feng, C. Zhang, J. Zhang, Y. Hao, M. Liao, and Y. Zhou, "Thermally stable and radiation hard ferroelectric Hf0.5Zr0.5O2 thin films on muscovite mica for flexible nonvolatile memory applications," ACS Applied Electronic Materials, vol. 1, no. 6, pp. 919-927, 2019.
    [1.21] Y. Chen, Y. Yang, P. Yuan, P. Jiang, Y. Wang, Y. Xu, S. Lv, Y. Ding, Z. Dang, Z. Gao, T. Gong, Y. Wang, and Q. Luo, "Flexible Hf0.5Zr0.5O2 ferroelectric thin films on polyimide with improved ferroelectricity and high flexibility," Nano Research, vol. 15, no. 4, pp. 2913-2918, 2022.
    [1.22] S. S. Cheema, D. Kwon, N. Shanker, R. dos Reis, S.-L. Hsu, J. Xiao, H. Zhang, R. Wagner, A. Datar, M. R. McCarter, C. R. Serrao, A. K. Yadav, G. Karbasian, C.-H. Hsu, A. J. Tan, L.-C. Wang, V. Thakare, X. Zhang, A. Mehta, E. Karapetrova, R. V. Chopdekar, P. Shafer, E. Arenholz, C. Hu, R. Proksch, R. Ramesh, J. Ciston, and S. Salahuddin, "Enhanced ferroelectricity in ultrathin films grown directly on silicon," Nature, vol. 580, no. 7804, pp. 478-482, 2020.
    [1.23] S. Fujii, M. Yamaguchi, S. Kabuyanagi, K. Ota, and M. Saitoh, "Improved state stability of HfO2 ferroelectric tunnel junction by template-induced crystallization and remote scavenging for efficient in-memory reinforcement learning," in 2020 IEEE Symposium on VLSI Technology, 2020, pp. 1-2.
    [1.24] H. Bae, S. G. Nam, T. Moon, Y. Lee, S. Jo, D. H. Choe, S. Kim, K. H. Lee, and J. Heo, "Sub-ns polarization switching in 25nm FE FinFET toward post CPU and spatial-energetic mapping of traps for enhanced endurance," in 2020 IEEE International Electron Devices Meeting (IEDM), 2020, pp. 31.3.1-31.3.4.
    [1.25] X. Lyu, M. Si, P. R. Shrestha, K. P. Cheung, and P. D. Ye, "Dynamics studies of polarization switching in ferroelectric hafnium zirconium oxide," in 2021 5th IEEE Electron Devices Technology & Manufacturing Conference (EDTM), 2021, pp. 1-3.
    [1.26] T. Schenk, M. Hoffmann, J. Ocker, M. Pešić, T. Mikolajick, and U. Schroeder, "Complex internal bias fields in ferroelectric hafnium oxide," ACS Applied Materials & Interfaces, vol. 7, no. 36, pp. 20224-20233, 2015.
    [1.27] P. Buragohain, C. Richter, T. Schenk, H. Lu, T. Mikolajick, U. Schroeder, and A. Gruverman, "Nanoscopic studies of domain structure dynamics in ferroelectric La:HfO2 capacitors," Applied Physics Letters, vol. 112, no. 22, p. 222901, 2018.
    [1.28] S. D. Hyun, H. W. Park, Y. J. Kim, M. H. Park, Y. H. Lee, H. J. Kim, Y. J. Kwon, T. Moon, K. D. Kim, Y. B. Lee, B. S. Kim, and C. S. Hwang, "Dispersion in ferroelectric switching performance of polycrystalline Hf0.5Zr0.5O2 thin films," ACS Applied Materials & Interfaces, vol. 10, no. 41, pp. 35374-35384, 2018.
    [1.29] A. K. Tagantsev, I. Stolichnov, N. Setter, J. S. Cross, and M. Tsukada, "Non-Kolmogorov-Avrami switching kinetics in ferroelectric thin films," Physical Review B, vol. 66, no. 21, p. 214109, 2002.
    [1.30] S. Zhukov, Y. A. Genenko, O. Hirsch, J. Glaum, T. Granzow, and H. von Seggern, "Dynamics of polarization reversal in virgin and fatigued ferroelectric ceramics by inhomogeneous field mechanism," Physical Review B, vol. 82, no. 1, p. 014109, 2010.
    [1.31] F. Muller, M. Lederer, R. Olivo, A. Reck, T. Ali, K. Seidel, and T. Kämpfe, "Microstructural implications for neuromorphic synapses based on ferroelectric hafnium oxide," in 2021 IEEE International Symposium on Applications of Ferroelectrics (ISAF), 2021, pp. 1-4.
    [1.32] Y. Higashi, N. Ronchi, B. Kaczer, K. Banerjee, S. R. C. McMitchell, B. J. O’Sullivan, S. Clima, A. Minj, U. Celano, L. D. Piazza, M. Suzuki, D. Linten, and J. V. Houdt, "Impact of charge trapping on imprint and its recovery in HfO2 based FeFET," in 2019 IEEE International Electron Devices Meeting (IEDM), 2019, pp. 15.6.1-15.6.4.
    [1.33] M. C. Chun, S. Park, S. Park, G.-y. Park, M. J. Kim, Y. Cho, and B. S. Kang, "Effect of wake-up on the polarization switching dynamics of Si doped HfO2 thin films with imprint," Journal of Alloys and Compounds, vol. 823, p. 153777, 2020.
    [1.34] E. Kondratyuk, V. Mikheev, and A. Chouprik, "Effect of charge injection on the switching speed of ferroelectric memory based on HfO2," ACS Applied Electronic Materials, vol. 4, no. 7, pp. 3567-3574, 2022.
    [1.35] P. Cai, H. Li, Z. Liu, T. Zhu, M. Zeng, Z. Ji, Y. Wu, A. Padovani, L. Larcher, M. Pešić, R. Wang, and R. Huang, "Investigation of coercive field shift during cycling in HfZrOx ferroelectric capacitors," IEEE Transactions on Electron Devices, vol. 69, no. 5, pp. 2384-2390, 2022.
    [1.36] M. S. Song, T. Y. Lee, K. Lee, K. C. Lee, and S. C. Chae, "Electric field cycling-mediated variations in defect distributions associated with wake-up and split-up behaviors of a ferroelectric Si-doped HfO2 thin film," Applied Physics Letters, vol. 117, no. 16, p. 162903, 2020.
    [1.37] Y. Higashi, B. Kaczer, A. S. Verhulst, B. J. O’Sullivan, N. Ronchi, S. R. C. McMitchell, K. Banerjee, L. D. Piazza, M. Suzuki, D. Linten, and J. V. Houdt, "Investigation of imprint in FE-HfO₂ and its recovery," IEEE Transactions on Electron Devices, vol. 67, no. 11, pp. 4911-4917, 2020.
    [1.38] P. Buragohain, A. Erickson, P. Kariuki, T. Mittmann, C. Richter, P. D. Lomenzo, H. Lu, T. Schenk, T. Mikolajick, U. Schroeder, and A. Gruverman, "Fluid imprint and inertial switching in ferroelectric La:HfO2 capacitors," ACS Applied Materials & Interfaces, vol. 11, no. 38, pp. 35115-35121, 2019.
    [1.39] Y. Higashi, K. Florent, A. Subirats, B. Kaczer, L. D. Piazza, S. Clima, N. Ronchi, S. R. C. McMitchell, K. Banerjee, U. Celano, M. Suzuki, D. Linten, and J. V. Houdt, "New insights into the imprint effect in FE-HfO2 and its recovery," in 2019 IEEE International Reliability Physics Symposium (IRPS), 2019, pp. 1-7.
    [1.40] A. G. Chernikova and A. M. Markeev, "Dynamic imprint recovery as an origin of the pulse width dependence of retention in Hf0.5Zr0.5O2-based capacitors," Applied Physics Letters, vol. 119, no. 3, p. 032904, 2021.
    [1.41] K. Takada, M. Murase, S. Migita, Y. Morita, H. Ota, N. Fujimura, and T. Yoshimura, "Investigation of the wake-up process and time-dependent imprint of Hf0.5Zr0.5O2 film through the direct piezoelectric response," Applied Physics Letters, vol. 119, no. 3, p. 032902, 2021.
    [1.42] K. Takada, S. Takarae, K. Shimamoto, N. Fujimura, and T. Yoshimura, "Time-Dependent imprint in Hf0.5Zr0.5O2 ferroelectric thin films," Advanced Electronic Materials, vol. 7, no. 8, p. 2100151, 2021.
    [1.43] K. Ni, P. Sharma, J. Zhang, M. Jerry, J. A. Smith, K. Tapily, R. Clark, S. Mahapatra, and S. Datta, "Critical role of interlayer in Hf0.5Zr0.5O2 ferroelectric FET nonvolatile memory performance," IEEE Transactions on Electron Devices, vol. 65, no. 6, pp. 2461-2469, 2018.
    [1.44] H. Zhou, J. Ocker, A. Padovani, M. Pesic, M. Trentzsch, S. Dünkel, H. Mulaosmanovic, S. Slesazeck, L. Larcher, S. Beyer, S. Müller, and T. Mikolajick, "Application and benefits of target programming algorithms for ferroelectric HfO2 transistors," in 2020 IEEE International Electron Devices Meeting (IEDM), 2020, pp. 18.6.1-18.6.4.
    [1.45] D. Kleimaier, H. Mulaosmanovic, S. Dünkel, S. Beyer, S. Soss, S. Slesazeck, and T. Mikolajick, "Demonstration of a p-Type ferroelectric FET with immediate read-after-write capability," IEEE Electron Device Letters, vol. 42, no. 12, pp. 1774-1777, 2021.
    [1.46] S. H. Kuk, S. M. Han, B. H. Kim, S. H. Baek, J. H. Han, and S. h. Kim, "Comprehensive understanding of the HZO-based n/pFeFET operation and device performance enhancement strategy," in 2021 IEEE International Electron Devices Meeting (IEDM), 2021, pp. 33.6.1-33.6.4.
    [1.47] N. Tasneem, Z. Wang, Z. Zhao, N. Upadhyay, S. Lombardo, H. Chen, J. Hur, D. Triyoso, S. Consiglio, K. Tapily, R. Clark, G. Leusink, S. Kurinec, S. Datta, S. Yu, K. Ni, M. Passlack, W. Chern, and A. Khan, "Trap capture and emission dynamics in ferroelectric field-effect transistors and their impact on device operation and reliability," in 2021 IEEE International Electron Devices Meeting (IEDM), 2021, pp. 6.1.1-6.1.4.
    [1.48] Z. Wang, N. Tasneem, J. Hur, H. Chen, S. Yu, W. Chern, and A. Khan, "Standby bias improvement of read after write delay in ferroelectric field effect transistors," in 2021 IEEE International Electron Devices Meeting (IEDM), 2021, pp. 19.3.1-19.3.4.
    [1.49] S. Deng, Z. Zhao, Y. S. Kim, S. Duenkel, D. MacMahon, R. Tiwari, N. Choudhury, S. Beyer, X. Gong, S. Kurinec, and K. Ni, "Unraveling the dynamics of charge trapping and de-trapping in ferroelectric FETs," IEEE Transactions on Electron Devices, vol. 69, no. 3, pp. 1503-1511, 2022.
    [1.50] Y.-Y. Wang, K.-C. Wang, T.-Y. Chang, N. Ronchi, B. O'Sullivan, K. Banerjee, G. van den Bosch, J. Van Houdt, and T.-L. Wu, "Relaxation analysis to understand positive bias induced trapping in ferroelectric FETs with Si and Gd dopants," Microelectronics Reliability, vol. 138, p. 114680, 2022.
    [1.51] S. Dutta, H. Ye, A. A. Khandker, S. G. Kirtania, A. Khanna, K. Ni, and S. Datta, "Logic compatible high-performance ferroelectric transistor memory," IEEE Electron Device Letters, vol. 43, no. 3, pp. 382-385, 2022.
    [1.52] M. Hoffmann, A. J. Tan, N. Shanker, Y. H. Liao, L. C. Wang, J. H. Bae, C. Hu, and S. Salahuddin, "Fast read-after-write and depolarization fields in high endurance n-Type ferroelectric FETs," IEEE Electron Device Letters, vol. 43, no. 5, pp. 717-720, 2022.
    [1.53] H. Mulaosmanovic, E. T. Breyer, T. Mikolajick, and S. Slesazeck, "Switching and charge trapping in HfO2-based ferroelectric FETs: An overview and potential applications," in 2020 4th IEEE Electron Devices Technology & Manufacturing Conference (EDTM), 2020, pp. 1-4.
    [1.54] E. Yurchuk, J. Müller, S. Müller, J. Paul, M. Pešić, R. v. Bentum, U. Schroeder, and T. Mikolajick, "Charge-trapping phenomena in HfO2-based FeFET-type nonvolatile memories," IEEE Transactions on Electron Devices, vol. 63, no. 9, pp. 3501-3507, 2016.
    [1.55] N. Gong and T. P. Ma, "A study of endurance issues in HfO2-based ferroelectric field effect transistors: Charge trapping and trap generation," IEEE Electron Device Letters, vol. 39, no. 1, pp. 15-18, 2018
    [1.56] J. Muller, T. S. Boscke, U. Schroder, R. Hoffmann, T. Mikolajick, and L. Frey, "Nanosecond polarization switching and long retention in a novel MFIS-FET based on ferroelectric HfO2" IEEE Electron Device Letters, vol. 33, no. 2, pp. 185-187, 2012.
    [1.57] J. Muller, P. Polakowski, S. Muller, H. Mulaosmanovic, J. Ocker, T. Mikolajick, S. Slesazeck, S. Muller, J. Ocker, T. Mikolajick, S. Flachowsky, and M. Trentzsch, "High endurance strategies for hafnium oxide based ferroelectric field effect transistor," in 2016 16th non-volatile memory Technology Symposium (NVMTS), 2016, pp. 1-7.
    [1.58] T. Ali, P. Polakowski, S. Riedel, T. Büttner, T. Kämpfe, M. Rudolph, B. Pätzold, K. Seidel, D. Löhr, R. Hoffmann, M. Czernohorsky, K. Kühnel, P. Steinke, J. Calvo, K. Zimmermann, and J. Müller, "High endurance ferroelectric hafnium oxide-based FeFET memory without retention penalty," IEEE Transactions on Electron Devices, vol. 65, no. 9, pp. 3769-3774, 2018.
    [1.59] A. J. Tan, Y. H. Liao, L. C. Wang, N. Shanker, J. H. Bae, C. Hu, and S. Salahuddin, "Ferroelectric HfO2 memory transistors with high-κ interfacial layer and write endurance exceeding 1010 cycles," IEEE Electron Device Letters, vol. 42, no. 7, pp. 994-997, 2021.
    [1.60] H. Li, "Modeling of threshold voltage distribution in NAND flash memory: A monte carlo method," IEEE Transactions on Electron Devices, vol. 63, no. 9, pp. 3527-3532, 2016.
    [1.61] T. Ali, P. Polakowski, K. Kühnel, M. Czernohorsky, T. Kämpfe, M. Rudolph, B. Pätzold, D. Lehninger, F. Müller, R. Olivo, M. Lederer, R. Hoffmann, P. Steinke, K. Zimmermann, U. Mühle, K. Seidel, and J. Müller, "A multilevel FeFET memory device based on laminated HSO and HZO ferroelectric layers for high-density storage," in 2019 IEEE International Electron Devices Meeting (IEDM), 2019, pp. 28.7.1-28.7.4.
    [1.62] T. Schenk, U. Schroeder, M. Pešić, M. Popovici, Y. V. Pershin, and T. Mikolajick, "Electric field cycling behavior of ferroelectric hafnium oxide," ACS Applied Materials & Interfaces, vol. 6, no. 22, pp. 19744-19751, 2014.
    [1.63] S. Li, D. Zhou, Z. Shi, M. Hoffmann, T. Mikolajick, and U. Schroeder, "Temperature-dependent subcycling behavior of Si-doped HfO2 ferroelectric thin films," ACS Applied Electronic Materials, vol. 3, no. 5, pp. 2415-2422, 2021.
    [1.64] S. Li, D. Zhou, Z. Shi, M. Hoffmann, T. Mikolajick, and U. Schroeder, "Involvement of unsaturated switching in the endurance cycling of Si-doped HfO2 ferroelectric thin films," Advanced Electronic Materials, vol. 6, no. 8, p. 2000264, 2020.
    [1.65] C. Liu, F. Liu, Q. Luo, P. Huang, X. X. Xu, H. B. Lv, Y. D. Zhao, X. Y. Liu, and J. F. Kang, "Role of oxygen vacancies in electric field cycling behaviors of ferroelectric hafnium oxide," in 2018 IEEE International Electron Devices Meeting (IEDM), 2018, pp. 16.4.1-16.4.4.
    [1.66] P. Wang, Z. Wang, X. Sun, J. Hur, S. Datta, A. I. Khan, and S. Yu, "Investigating ferroelectric minor loop dynamics and history effect—Part II: Physical modeling and impact on neural network training," IEEE Transactions on Electron Devices, vol. 67, no. 9, pp. 3598-3604, 2020.
    [1.67] H. Mulaosmanovic, J. Ocker, S. Müller, M. Noack, J. Müller, P. Polakowski, T. Mikolajick, and S. Slesazeck, "Novel ferroelectric FET based synapse for neuromorphic systems," in 2017 Symposium on VLSI Technology, 2017, pp. T176-T177.
    [1.68] K. Lee, H.-J. Lee, T. Y. Lee, H. H. Lim, M. S. Song, H. K. Yoo, D. I. Suh, J. G. Lee, Z. Zhu, A. Yoon, M. R. MacDonald, X. Lei, K. Park, J. Park, J. H. Lee, and S. C. Chae, "Stable subloop behavior in ferroelectric Si-doped HfO2," ACS Applied Materials & Interfaces, vol. 11, no. 42, pp. 38929-38936, 2019.

    Chapter 2
    [2.1] T.-C. Chang, F.-Y. Jian, S.-C. Chen, and Y.-T. Tsai, "Developments in nanocrystal memory," Materials Today, vol. 14, no. 12, pp. 608-615, 2011.
    [2.2] S. Yu, "Neuro-inspired computing with emerging nonvolatile memorys," Proceedings of the IEEE, vol. 106, no. 2, pp. 260-285, 2018.
    [2.3] T. Ali, P. Polakowski, S. Riedel, T. Büttner, T. Kämpfe, M. Rudolph, B. Pätzold, K. Seidel, D. Löhr, R. Hoffmann, M. Czernohorsky, K. Kühnel, P. Steinke, J. Calvo, K. Zimmermann, and J. Müller, "High endurance ferroelectric hafnium oxide-based FeFET memory without retention penalty," IEEE Transactions on Electron Devices, vol. 65, no. 9, pp. 3769-3774, 2018.
    [2.4] K. T. Chen, H. Y. Chen, C. Y. Liao, G. Y. Siang, C. Lo, M. H. Liao, K. S. Li, S. T. Chang, and M. H. Lee, "Non-volatile ferroelectric FETs using 5-nm Hf0.5Zr0.5O2 with high data retention and read endurance for 1T memory applications," IEEE Electron Device Letters, vol. 40, no. 3, pp. 399-402, 2019.
    [2.5] S. Dünkel, M. Trentzsch, R. Richter, P. Moll, C. Fuchs, O. Gehring, M. Majer, S. Wittek, B. Müller, T. Melde, H. Mulaosmanovic, S. Slesazeck, S. Müller, J. Ocker, M. Noack, D. A. Löhr, P. Polakowski, J. Müller, T. Mikolajick, J. Höntschel, B. Rice, J. Pellerin, and S. Beyer, "A FeFET based super-low-power ultra-fast embedded NVM technology for 22nm FDSOI and beyond," in 2017 IEEE International Electron Devices Meeting (IEDM), 2017, pp. 19.7.1-19.7.4.
    [2.6] H. Mulaosmanovic, E. T. Breyer, T. Mikolajick, and S. Slesazeck, "Ferroelectric FETs with 20-nm-thick HfO2 layer for large memory window and high performance," IEEE Transactions on Electron Devices, vol. 66, no. 9, pp. 3828-3833, 2019.
    [2.7] J. Melskens, B. W. H. v. d. Loo, B. Macco, L. E. Black, S. Smit, and W. M. M. Kessels, "Passivating contacts for crystalline silicon solar cells: From concepts and materials to prospects," IEEE Journal of Photovoltaics, vol. 8, no. 2, pp. 373-388, 2018.
    [2.8] H.-Y. Chen, H.-L. Lu, J.-X. Chen, F. Zhang, X.-M. Ji, W.-J. Liu, X.-F. Yang, and D. W. Zhang, "Low-temperature one-step growth of AlON thin films with homogenous nitrogen-doping profile by plasma-enhanced atomic layer deposition," ACS Applied Materials & Interfaces, vol. 9, no. 44, pp. 38662-38669, 2017.
    [2.9] C. J. Su, Y. T. Tang, Y. C. Tsou, P. J. Sung, F. J. Hou, C. J. Wang, S. T. Chung, C. Y. Hsieh, Y. S. Yeh, F. K. Hsueh, K. H. Kao, S. S. Chuang, C. T. Wu, T. Y. You, Y. L. Jian, T. H. Chou, Y. L. Shen, B. Y. Chen, G. L. Luo, T. C. Hong, K. P. Huang, M. C. Chen, Y. J. Lee, T. S. Chao, T. Y. Tseng, W. F. Wu, G. W. Huang, J. M. Shieh, W. K. Yeh, and Y. H. Wang, "Nano-scaled Ge FinFETs with low temperature ferroelectric HfZrOx on specific interfacial layers exhibiting 65% S.S. reduction and improved ION," in 2017 Symposium on VLSI Technology, 2017, pp. T152-T153.
    [2.10] Y. T. Tang, C. L. Fan, Y. C. Kao, N. Modolo, C. J. Su, T. L. Wu, K. H. Kao, P. J. Wu, S. W. Hsaio, A. Useinov, P. Su, W. F. Wu, G. W. Huang, J. M. Shieh, W. K. Yeh, and Y. H. Wang, "A comprehensive kinetical modeling of polymorphic phase distribution of ferroelectric-dielectrics and interfacial energy effects on negative capacitance FETs," in 2019 Symposium on VLSI Technology, 2019, pp. T222-T223.
    [2.11] K. Florent, M. Pesic, A. Subirats, K. Banerjee, S. Lavizzari, A. Arreghini, L. D. Piazza, G. Potoms, F. Sebaai, S. R. C. McMitchell, M. Popovici, G. Groeseneken, and J. V. Houdt, "Vertical ferroelectric HfO2 FET based on 3-D NAND architecture: Towards dense low-power memory," in 2018 IEEE International Electron Devices Meeting (IEDM), 2018, pp. 2.5.1-2.5.4.
    [2.12] K. Ni, P. Sharma, J. Zhang, M. Jerry, J. A. Smith, K. Tapily, R. Clark, S. Mahapatra, and S. Datta, "Critical role of interlayer in Hf0.5Zr0.5O2 ferroelectric FET nonvolatile memory performance," IEEE Transactions on Electron Devices, vol. 65, no. 6, pp. 2461-2469, 2018.
    [2.13] H. Mulaosmanovic, E. T. Breyer, T. Mikolajick, and S. Slesazeck, "Recovery of cycling endurance failure in ferroelectric FETs by self-heating," IEEE Electron Device Letters, vol. 40, no. 2, pp. 216-219, 2019.
    [2.14] E. Yurchuk, S. Mueller, D. Martin, S. Slesazeck, U. Schroeder, T. Mikolajick, J. Müller, J. Paul, R. Hoffmann, J. Sundqvist, T. Schlösser, R. Boschke, R. v. Bentum, and M. Trentzsch, "Origin of the endurance degradation in the novel HfO2-based 1T ferroelectric non-volatile memories," in 2014 IEEE International Reliability Physics Symposium, 2014, pp. 2E.5.1-2E.5.5.
    [2.15] M. A. Alam, J. Bude, and A. Ghetti, "Field acceleration for oxide breakdown-can an accurate anode hole injection model resolve the E vs. 1/E controversy?," in 2000 IEEE International Reliability Physics Symposium Proceedings, 2000, pp. 21-26.

    Chapter3
    [3.1] T. S. Böscke, J. Müller, D. Bräuhaus, U. Schröder, and U. Böttger, "Ferroelectricity in hafnium oxide thin films," Applied Physics Letters, vol. 99, no. 10, p. 102903, 2011.
    [3.2] J. Müller, T. S. Böscke, S. Müller, E. Yurchuk, P. Polakowski, J. Paul, D. Martin, T. Schenk, K. Khullar, A. Kersch, W. Weinreich, S. Riedel, K. Seidel, A. Kumar, T. M. Arruda, S. V. Kalinin, T. Schlösser, R. Boschke, R. v. Bentum, U. Schröder, and T. Mikolajick, "Ferroelectric hafnium oxide: A CMOS-compatible and highly scalable approach to future ferroelectric memories," in 2013 IEEE International Electron Devices Meeting, 2013, pp. 10.8.1-10.8.4.
    [3.3] C. Y. Chan, K. Y. Chen, H. K. Peng, and Y. H. Wu, "FeFET memory featuring large memory window and robust endurance of long-pulse cycling by interface engineering using high-k AlON," in 2020 IEEE Symposium on VLSI Technology, 2020, pp. 1-2.
    [3.4] H. Mulaosmanovic, S. Dünkel, J. Müller, M. Trentzsch, S. Beyer, E. T. Breyer, T. Mikolajick, and S. Slesazeck, "Impact of read operation on the performance of HfO2-based ferroelectric FETs," IEEE Electron Device Letters, vol. 41, no. 9, pp. 1420-1423, 2020.
    [3.5] F. Winkler, M. Pešić, C. Richter, M. Hoffmann, T. Mikolajick, and J. W. Bartha, "Demonstration and endurance improvement of p-channel hafnia-based ferroelectric field effect transistors," in 2019 Device Research Conference (DRC), 2019, pp. 51-52.
    [3.6] M. Lederer, F. Müller, K. Kühnel, R. Olivo, K. Mertens, M. Trentzsch, S. Dünkel, J. Müller, S. Beyer, K. Seidel, T. Kämpfe, and L. M. Eng, "Integration of hafnium oxide on epitaxial SiGe for p-type ferroelectric FET application," IEEE Electron Device Letters, vol. 41, no. 12, pp. 1762-1765, 2020.
    [3.7] D.-H. Min, T.-H. Ryu, S.-J. Yoon, S.-E. Moon, and S.-M. Yoon, "Improvements in the synaptic operations of ferroelectric field-effect transistors using Hf0.5Zr0.5O2 thin films controlled by oxygen partial pressures during the sputtering deposition process," Journal of Materials Chemistry C, vol. 8, no. 21, pp. 7120-7131, 2020.
    [3.8] V. Sessi, M. Simon, H. Mulaosmanovic, D. Pohl, M. Loeffler, T. Mauersberger, F. P. G. Fengler, T. Mittmann, C. Richter, S. Slesazeck, T. Mikolajick, and W. M. Weber, "A silicon nanowire ferroelectric field-effect transistor," Advanced Electronic Materials, vol. 6, no. 4, p. 1901244, 2020.
    [3.9] K. Toprasertpong, Z. Y. Lin, T. E. Lee, M. Takenaka, and S. Takagi, "Asymmetric polarization response of electrons and holes in Si FeFETs: Demonstration of absolute polarization hysteresis loop and inversion hole density over 2×1013 cm−2," in 2020 IEEE Symposium on VLSI Technology, 2020, pp. 1-2.
    [3.10] N. Huynh Van, J.-H. Lee, D. Whang, and D. J. Kang, "Ultralow-power non-volatile memory cells based on P(VDF-TrFE) ferroelectric-gate CMOS silicon nanowire channel field-effect transistors," Nanoscale, vol. 7, no. 27, pp. 11660-11666, 2015.
    [3.11] E. T. Breyer and S. Slesazeck, "Chapter 10.6 - Ferroelectric Devices for Logic in Memory," in Ferroelectricity in Doped Hafnium Oxide: Materials, Properties and Devices, U. Schroeder, C. S. Hwang, and H. Funakubo Eds.: Woodhead Publishing, 2019, pp. 495-513.
    [3.12] M. Hyuk Park, H. Joon Kim, Y. Jin Kim, W. Lee, T. Moon, and C. Seong Hwang, "Evolution of phases and ferroelectric properties of thin Hf0.5Zr0.5O2 films according to the thickness and annealing temperature," Applied Physics Letters, vol. 102, no. 24, p. 242905, 2013.
    [3.13] K. Toprasertpong, M. Takenaka, and S. Takagi, "Direct observation of interface charge behaviors in FeFET by quasi-static split C-V and hall techniques: Revealing FeFET operation," in 2019 IEEE International Electron Devices Meeting (IEDM), 2019, pp. 23.7.1-23.7.4.
    [3.14] M. H. Park, T. Schenk, C. M. Fancher, E. D. Grimley, C. Zhou, C. Richter, J. M. LeBeau, J. L. Jones, T. Mikolajick, and U. Schroeder, "A comprehensive study on the structural evolution of HfO2 thin films doped with various dopants," Journal of Materials Chemistry C, vol. 5, no. 19, pp. 4677-4690, 2017.
    [3.15] T. Ali, K. Kühnel, K. Mertens, M. Czernohorsky, M. Rudolph, P. Duhan, D. Lehninger, R. Hoffmann, P. Steinke, J. Müller, J. V. Houdt, K. Seidel, and L. M. Eng, "Effect of substrate implant tuning on the performance of MFIS silicon doped hafnium oxide (HSO) FeFET memory," in 2020 IEEE International Memory Workshop (IMW), 2020, pp. 1-4.
    [3.16] K. D. Kim, M. H. Park, H. J. Kim, Y. J. Kim, T. Moon, Y. H. Lee, S. D. Hyun, T. Gwon, and C. S. Hwang, "Ferroelectricity in undoped-HfO2 thin films induced by deposition temperature control during atomic layer deposition," Journal of Materials Chemistry C, vol. 4, no. 28, pp. 6864-6872, 2016.
    [3.17] J. Y. Lee, G. Anoop, H. J. Lee, J. H. Kwak, and J. Y. Jo, "Structural properties of solution-processed Hf0.5Zr0.5O2 thin films," Current Applied Physics, vol. 17, no. 5, pp. 704-708, 2017.
    [3.18] T. Ali, P. Polakowski, K. Kühnel, M. Czernohorsky, T. Kämpfe, M. Rudolph, B. Pätzold, D. Lehninger, F. Müller, R. Olivo, M. Lederer, R. Hoffmann, P. Steinke, K. Zimmermann, U. Mühle, K. Seidel, and J. Müller, "A multilevel FeFET memory Device based on Laminated HSO and HZO Ferroelectric Layers for High-Density Storage," in 2019 IEEE International Electron Devices Meeting (IEDM), 2019, pp. 28.7.1-28.7.4.
    [3.19] H. Mulaosmanovic, E. T. Breyer, T. Mikolajick, and S. Slesazeck, "Ferroelectric FETs with 20-nm-thick HfO2 layer for large memory window and high performance," IEEE Transactions on Electron Devices, vol. 66, no. 9, pp. 3828-3833, 2019.
    [3.20] K. T. Chen, H. Y. Chen, C. Y. Liao, G. Y. Siang, C. Lo, M. H. Liao, K. S. Li, S. T. Chang, and M. H. Lee, "Non-volatile ferroelectric FETs using 5-nm Hf0.5Zr0.5O2 with high data retention and read endurance for 1T memory applications," IEEE Electron Device Letters, vol. 40, no. 3, pp. 399-402, 2019.
    [3.21] M. Si, X. Lyu, P. R. Shrestha, X. Sun, H. Wang, K. P. Cheung, and P. D. Ye, "Ultrafast measurements of polarization switching dynamics on ferroelectric and anti-ferroelectric hafnium zirconium oxide," Applied Physics Letters, vol. 115, no. 7, p. 072107, 2019.
    [3.22] E. Yurchuk, J. Müller, S. Müller, J. Paul, M. Pešić, R. v. Bentum, U. Schroeder, and T. Mikolajick, "Charge-trapping phenomena in HfO2-based FeFET-type nonvolatile memories," IEEE Transactions on Electron Devices, vol. 63, no. 9, pp. 3501-3507, 2016.
    [3.23] T. Ali, P. Polakowski, S. Riedel, T. Büttner, T. Kämpfe, M. Rudolph, B. Pätzold, K. Seidel, D. Löhr, R. Hoffmann, M. Czernohorsky, K. Kühnel, P. Steinke, J. Calvo, K. Zimmermann, and J. Müller, "High endurance ferroelectric hafnium oxide-based FeFET memory without retention penalty," IEEE Transactions on Electron Devices, vol. 65, no. 9, pp. 3769-3774, 2018.
    [3.24] A. J. Tan, M. Pešić, L. Larcher, Y. H. Liao, L. C. Wang, J. H. Bae, C. Hu, and S. Salahuddin, "Hot electrons as the dominant source of degradation for sub-5nm HZO FeFETs," in 2020 IEEE Symposium on VLSI Technology, 2020, pp. 1-2.

    Chapter4
    [4.1] S. Gerardin and A. Paccagnella, "Present and future non-volatile memories for space," IEEE Transactions on Nuclear Science, vol. 57, no. 6, pp. 3016-3039, 2010.
    [4.2] F. Huang, Y. Wang, X. Liang, J. Qin, Y. Zhang, X. Yuan, Z. Wang, B. Peng, L. Deng, Q. Liu, L. Bi, and M. Liu, "HfO2-based highly stable radiation-immune ferroelectric memory," IEEE Electron Device Letters, vol. 38, no. 3, pp. 330-333, 2017.
    [4.3] K. Y. Chen, Y. S. Tsai, and Y. H. Wu, "Ionizing radiation effect on memory characteristics for HfO2-based ferroelectric field-effect transistors," IEEE Electron Device Letters, vol. 40, no. 9, pp. 1370-1373, 2019.
    [4.4] H. Bae, S. G. Nam, T. Moon, Y. Lee, S. Jo, D. H. Choe, S. Kim, K. H. Lee, and J. Heo, "Sub-ns polarization switching in 25nm FE FinFET toward post CPU and spatial-energetic mapping of traps for enhanced endurance," in 2020 IEEE International Electron Devices Meeting (IEDM), 2020, pp. 31.3.1-31.3.4.
    [4.5] W. Zhang, G. Li, X. Long, L. Cui, M. Tang, Y. Xiao, S. Yan, Y. Li, and W. Zhao, "A comparative study of the γ-ray radiation effect on Zr-doped and Al-doped HfO2-based ferroelectric memory," physica status solidi (b), vol. 257, no. 5, p. 1900736, 2020.
    [4.6] W. Zhang, G. Wang, M. Tang, L. Cui, T. Wang, P. Su, Z. Chen, X. Long, Y. Xiao, and S. Yan, "Impact of radiation effect on ferroelectric Al-doped HfO2 metal-ferroelectric- insulator-semiconductor structure," IEEE Access, vol. 8, pp. 108121-108126, 2020.
    [4.7] C. Liu, W. Xiao, Y. Peng, B. Zeng, S. Zheng, L. Yin, Q. Peng, X. Zhong, M. Liao, and Y. Zhou, "Hf0.5Zr0.5O2-based ferroelectric field-effect transistors with HfO2 seed layers for radiation-hard nonvolatile memory applications," IEEE Transactions on Electron Devices, vol. 68, no. 9, pp. 4368-4372, 2021.
    [4.8] E. Yurchuk, J. Müller, S. Müller, J. Paul, M. Pešić, R. v. Bentum, U. Schroeder, and T. Mikolajick, "Charge-trapping phenomena in HfO2-based FeFET-type nonvolatile memories," IEEE Transactions on Electron Devices, vol. 63, no. 9, pp. 3501-3507, 2016.
    [4.9] D. Kleimaier, H. Mulaosmanovic, S. Dünkel, S. Beyer, S. Soss, S. Slesazeck, and T. Mikolajick, "Demonstration of a p-Type ferroelectric FET with immediate read-after-write capability," IEEE Electron Device Letters, vol. 42, no. 12, pp. 1774-1777, 2021.
    [4.10] M. Takahashi, T. Horiuchi, Q.-H. Li, S. Wang, K. Y. Yun, and S. Sakai, "Basic operation of novel ferroelectric CMOS circuits," Electronics Letters, vol. 44, no. 7, pp. 467-469, 2008.
    [4.11] E. Yu, A. Agrawal, D. Zheng, M. Si, M. Koo, P. D. Ye, S. K. Gupta, and K. Roy, "Ferroelectric FET based coupled-oscillatory network for edge detection," IEEE Electron Device Letters, vol. 42, no. 11, pp. 1670-1673, 2021.
    [4.12] K. Toprasertpong, K. Tahara, M. Takenaka, and S. Takagi, "Evaluation of polarization characteristics in metal/ferroelectric/semiconductor capacitors and ferroelectric field-effect transistors," Applied Physics Letters, vol. 116, no. 24, p. 242903, 2020.
    [4.13] H. K. Peng, T. H. Kao, Y. C. Kao, P. J. Wu, and Y. H. Wu, "Reduced asymmetric memory window between Si-based n- and p-FeFETs with scaled ferroelectric HfZrOₓ and AlON interfacial layer," IEEE Electron Device Letters, vol. 42, no. 6, pp. 835-838, 2021.
    [4.14] A. Y. Kang, P. M. Lenahan, and J. F. Conley, "The radiation response of the high dielectric-constant hafnium oxide/silicon system," IEEE Transactions on Nuclear Science, vol. 49, no. 6, pp. 2636-2642, 2002.
    [4.15] V. Re, M. Manghisoni, L. Ratti, V. Speziali, and G. Traversi, "Impact of lateral isolation oxides on radiation-induced noise degradation in CMOS technologies in the 100-nm regime," IEEE Transactions on Nuclear Science, vol. 54, no. 6, pp. 2218-2226, 2007.
    [4.16] Z. Liu, Z. Hu, Z. Zhang, H. Shao, M. Chen, D. Bi, B. Ning, and S. Zou, "Gate length dependence of the shallow trench isolation leakage current in an irradiated deep submicron NMOSFET," Journal of Semiconductors, vol. 32, no. 6, p. 064004, 2011.
    [4.17] S. Beyer, S. Dünkel, M. Trentzsch, J. Müller, A. Hellmich, D. Utess, J. Paul, D. Kleimaier, J. Pellerin, S. Müller, J. Ocker, A. Benoist, H. Zhou, M. Mennenga, M. Schuster, F. Tassan, M. Noack, A. Pourkeramati, F. Müller, M. Lederer, T. Ali, R. Hoffmann, T. Kämpfe, K. Seidel, H. Mulaosmanovic, E. T. Breyer, T. Mikolajick, and S. Slesazeck, "FeFET: A versatile CMOS compatible device with game-changing potential," in 2020 IEEE International Memory Workshop (IMW), 2020, pp. 1-4.
    [4.18] H. Mulaosmanovic, S. Dünkel, D. Kleimaier, A. e. Kacimi, S. Beyer, E. T. Breyer, T. Mikolajick, and S. Slesazeck, "Effect of the Si doping content in HfO2 film on the key performance metrics of ferroelectric FETs," IEEE Transactions on Electron Devices, vol. 68, no. 9, pp. 4773-4779, 2021.
    [4.19] A. J. Tan, Y. H. Liao, L. C. Wang, N. Shanker, J. H. Bae, C. Hu, and S. Salahuddin, "Ferroelectric HfO2 memory transistors with High-κ interfacial layer and write endurance exceeding 1010 Cycles," IEEE Electron Device Letters, vol. 42, no. 7, pp. 994-997, 2021.
    [4.20] J. Min, N. Ronchi, S. R. C. McMitchell, B. O’Sullivan, K. Banerjee, G. V. d. bosch, J. V. Houdt, and C. Shin, "Program/Erase scheme for suppressing interface trap generation in HfO2-based ferroelectric field effect transistor," IEEE Electron Device Letters, vol. 42, no. 9, pp. 1280-1283, 2021.
    [4.21] H.-K. Peng, C.-Y. Chan, K.-Y. Chen, and Y.-H. Wu, "Enabling large memory window and high reliability for FeFET memory by integrating AlON interfacial layer," Applied Physics Letters, vol. 118, no. 10, p. 103503, 2021.
    [4.22] T. P. Ma and H. Jin-Ping, "Why is nonvolatile ferroelectric memory field-effect transistor still elusive?," IEEE Electron Device Letters, vol. 23, no. 7, pp. 386-388, 2002.

    Chapter5
    [5.1] M. H. Lee, S. T. Fan, C. H. Tang, P. G. Chen, Y. C. Chou, H. H. Chen, J. Y. Kuo, M. J. Xie, S. N. Liu, M. H. Liao, C. A. Jong, K. S. Li, M. C. Chen, and C. W. Liu, "Physical thickness 1.x nm ferroelectric HfZrOx negative capacitance FETs," in 2016 IEEE International Electron Devices Meeting (IEDM), 2016, pp. 12.1.1-12.1.4.
    [5.2] T. Ali, P. Polakowski, S. Riedel, T. Büttner, T. Kämpfe, M. Rudolph, B. Pätzold, K. Seidel, D. Löhr, R. Hoffmann, M. Czernohorsky, K. Kühnel, P. Steinke, J. Calvo, K. Zimmermann, and J. Müller, "High endurance ferroelectric hafnium oxide-based FeFET memory without retention penalty," IEEE Transactions on Electron Devices, vol. 65, no. 9, pp. 3769-3774, 2018.
    [5.3] M. Jerry, P. Y. Chen, J. Zhang, P. Sharma, K. Ni, S. Yu, and S. Datta, "Ferroelectric FET analog synapse for acceleration of deep neural network training," in 2017 IEEE International Electron Devices Meeting (IEDM), 2017, pp. 6.2.1-6.2.4.
    [5.4] Z. Zhao, Y. R. Chen, J. F. Wang, Y. W. Chen, J. R. Zou, Y. Lin, Y. Xing, C. W. Liu, and C. Hu, "Engineering Hf0.5Zr0.5O2 ferroelectric/anti-ferroelectric phases with oxygen vacancy and interface energy achieving high remanent polarization and dielectric constants," IEEE Electron Device Letters, vol. 43, no. 4, pp. 553-556, 2022.
    [5.5] Y. Zheng, C. Zhong, Y. Zheng, Z. Gao, Y. Cheng, Q. Zhong, C. Liu, Y. Wang, R. Qi, R. Huang, and H. Lyu, "In-situ atomic visualization of structural transformation in Hf0.5Zr0.5O2 ferroelectric thin film: from nonpolar tetragonal phase to polar orthorhombic phase," in 2021 Symposium on VLSI Technology, 2021, pp. 1-2.
    [5.6] K. Y. Chen, P. H. Chen, and Y. H. Wu, "Excellent reliability of ferroelectric HfZrOx free from wake-up and fatigue effects by NH3 plasma treatment," in 2017 Symposium on VLSI Circuits, 2017, pp. T84-T85.
    [5.7] C. Y. Chan, K. Y. Chen, H. K. Peng, and Y. H. Wu, "FeFET memory featuring large memory window and robust endurance of long-pulse cycling by interface engineering using high-k AlON," in 2020 IEEE Symposium on VLSI Technology, 2020, pp. 1-2.
    [5.8] Y. D. Lin, H. Y. Lee, Y. T. Tang, P. C. Yeh, H. Y. Yang, P. S. Yeh, C. Y. Wang, J. W. Su, S. H. Li, S. S. Sheu, T. H. Hou, W. C. Lo, M. H. Lee, M. F. Chang, Y. C. King, and C. J. Lin, "3D scalable, wake-up free, and highly reliable FRAM technology with stress-engineered HfZrOx," in 2019 IEEE International Electron Devices Meeting (IEDM), 2019, pp. 15.3.1-15.3.4.
    [5.9] W. Hamouda, A. Pancotti, C. Lubin, L. Tortech, C. Richter, T. Mikolajick, U. Schroeder, and N. Barrett, "Physical chemistry of the TiN/Hf0.5Zr0.5O2 interface," Journal of Applied Physics, vol. 127, no. 6, p. 064105, 2020.
    [5.10] R. Cao, Y. Wang, S. Zhao, Y. Yang, X. Zhao, W. Wang, X. Zhang, H. Lv, Q. Liu, and M. Liu, "Effects of capping electrode on ferroelectric properties of Hf0.5Zr0.5O2 thin films," IEEE Electron Device Letters, vol. 39, no. 8, pp. 1207-1210, 2018.
    [5.11] M. H. Park, Y. H. Lee, H. J. Kim, T. Schenk, W. Lee, K. D. Kim, F. P. G. Fengler, T. Mikolajick, U. Schroeder, and C. S. Hwang, "Surface and grain boundary energy as the key enabler of ferroelectricity in nanoscale hafnia-zirconia: a comparison of model and experiment," Nanoscale, vol. 9, no. 28, pp. 9973-9986, 2017.
    [5.12] M. H. Lee, P. G. Chen, S. T. Fan, Y. C. Chou, C. Y. Kuo, C. H. Tang, H. H. Chen, S. S. Gu, R. C. Hong, Z. Y. Wang, S. Y. Chen, C. Y. Liao, K. T. Chen, S. T. Chang, M. H. Liao, K. S. Li, and C. W. Liu, "Ferroelectric Al:HfO2 negative capacitance FETs," in 2017 IEEE International Electron Devices Meeting (IEDM), 2017, pp. 23.3.1-23.3.4.
    [5.13] X. Tian, S. Shibayama, T. Nishimura, T. Yajima, S. Migita, and A. Toriumi, "Evolution of ferroelectric HfO2 in ultrathin region down to 3 nm," Applied Physics Letters, vol. 112, no. 10, p. 102902, 2018.
    [5.14] A. Toriumi, L. Xu, Y. Mori, X. Tian, P. D. Lomenzo, H. Mulaosmanovic, M. Materano, T. Mikolajick, and U. Schroeder, "Material perspectives of HfO2-based ferroelectric films for device applications," in 2019 IEEE International Electron Devices Meeting (IEDM), 2019, pp. 15.1.1-15.1.4.
    [5.15] P. D. Lomenzo, Q. Takmeel, C. M. Fancher, C. Zhou, N. G. Rudawski, S. Moghaddam, J. L. Jones, and T. Nishida, "Ferroelectric Si-doped HfO2 device properties on highly doped germanium," IEEE Electron Device Letters, vol. 36, no. 8, pp. 766-768, 2015.
    [5.16] T. Schenk, M. Hoffmann, J. Ocker, M. Pešić, T. Mikolajick, and U. Schroeder, "Complex internal bias fields in ferroelectric hafnium oxide," ACS Applied Materials & Interfaces, vol. 7, no. 36, pp. 20224-20233, 2015.
    [5.17] M. Hoffmann, T. Schenk, M. Pešić, U. Schroeder, and T. Mikolajick, "Insights into antiferroelectrics from first-order reversal curves," Applied Physics Letters, vol. 111, no. 18, p. 182902, 2017.
    [5.18] Y. Goh and S. Jeon, "The effect of the bottom electrode on ferroelectric tunnel junctions based on CMOS-compatible HfO2," Nanotechnology, vol. 29, no. 33, p. 335201, 2018.
    [5.19] K. Toprasertpong, Z. Y. Lin, T. E. Lee, M. Takenaka, and S. Takagi, "Asymmetric polarization response of electrons and holes in Si FeFETs: Demonstration of absolute polarization hysteresis loop and inversion hole density over 2x1013 cm-2," in 2020 IEEE Symposium on VLSI Technology, 2020, pp. 1-2.
    [5.20] M. Pešić, F. P. G. Fengler, L. Larcher, A. Padovani, T. Schenk, E. D. Grimley, X. Sang, J. M. LeBeau, S. Slesazeck, U. Schroeder, and T. Mikolajick, "Physical mechanisms behind the field-cycling behavior of HfO2-based ferroelectric capacitors," Advanced Functional Materials, vol. 26, no. 25, pp. 4601-4612, 2016.
    [5.21] L. Mitoseriu, L. Stoleriu, A. Stancu, C. Galassi, and V. Buscaglia, "First order reversal curves diagrams for describing ferroelectric switching characteristics," Processing and Application of Ceramics, vol. 3, 2009.
    [5.22] F. P. G. Fengler, M. Pešić, S. Starschich, T. Schneller, C. Künneth, U. Böttger, H. Mulaosmanovic, T. Schenk, M. H. Park, R. Nigon, P. Muralt, T. Mikolajick, and U. Schroeder, "Domain pinning: Comparison of hafnia and PZT based ferroelectrics," Advanced Electronic Materials, vol. 3, no. 4, p. 1600505, 2017.
    [5.23] A. G. Chernikova, M. G. Kozodaev, D. V. Negrov, E. V. Korostylev, M. H. Park, U. Schroeder, C. S. Hwang, and A. M. Markeev, "Improved ferroelectric switching endurance of La-doped Hf0.5Zr0.5O2 thin films," ACS Applied Materials & Interfaces, vol. 10, no. 3, pp. 2701-2708, 2018.
    [5.24] C. Mart, K. Kühnel, T. Kämpfe, S. Zybell, and W. Weinreich, "Ferroelectric and pyroelectric properties of polycrystalline La-doped HfO2 thin films," Applied Physics Letters, vol. 114, no. 10, p. 102903, 2019.
    [5.25] M. S. Song, T. Y. Lee, K. Lee, K. C. Lee, and S. C. Chae, "Electric field cycling-mediated variations in defect distributions associated with wake-up and split-up behaviors of a ferroelectric Si-doped HfO2 thin film," Applied Physics Letters, vol. 117, no. 16, p. 162903, 2020.
    [5.26] S. Hong, Y. Lee, D. Ahn, and S.-E. Ahn, "Comparison of the evolution of internal bias field of doped hafnia ferroelectric capacitors for the field-cycling reliability," Applied Physics Letters, vol. 118, no. 1, p. 013504, 2021.
    [5.27] S. Li, D. Zhou, Z. Shi, M. Hoffmann, T. Mikolajick, and U. Schroeder, "Involvement of unsaturated switching in the endurance cycling of Si-doped HfO2 ferroelectric thin films," Advanced Electronic Materials, vol. 6, no. 8, p. 2000264, 2020.
    [5.28] S. Li, D. Zhou, Z. Shi, M. Hoffmann, T. Mikolajick, and U. Schroeder, "Temperature-dependent subcycling behavior of Si-doped HfO2 ferroelectric thin films," ACS Applied Electronic Materials, vol. 3, no. 5, pp. 2415-2422, 2021.
    [5.29] F. P. G. Fengler, M. Hoffmann, S. Slesazeck, T. Mikolajick, and U. Schroeder, "On the relationship between field cycling and imprint in ferroelectric Hf0.5Zr0.5O2," Journal of Applied Physics, vol. 123, no. 20, p. 204101, 2018.
    [5.30] C. Liu, F. Liu, Q. Luo, P. Huang, X. X. Xu, H. B. Lv, Y. D. Zhao, X. Y. Liu, and J. F. Kang, "Role of oxygen vacancies in electric field cycling behaviors of ferroelectric hafnium oxide," in 2018 IEEE International Electron Devices Meeting (IEDM), 2018, pp. 16.4.1-16.4.4.
    [5.31] M. Pesic, A. Padovani, S. Slcsazeck, T. Mikolajick, and L. Larcher, "Deconvoluting charge trapping and nucleation interplay in FeFETs: Kinetics and reliability," in 2018 IEEE International Electron Devices Meeting (IEDM), 2018, pp. 25.1.1-25.1.4.
    [5.32] K. Y. Chen, P. H. Chen, R. W. Kao, Y. X. Lin, and Y. H. Wu, "Impact of plasma treatment on reliability performance for HfZrOx-based metal-ferroelectric-metal capacitors," IEEE Electron Device Letters, vol. 39, no. 1, pp. 87-90, 2018.
    [5.33] S. Brivio, G. Tallarida, E. Cianci, and S. Spiga, "Formation and disruption of conductive filaments in a HfO2/TiN structure," Nanotechnology, vol. 25, no. 38, p. 385705, 2014.
    [5.34] O. Pirrotta, L. Larcher, M. Lanza, A. Padovani, M. Porti, M. Nafría, and G. Bersuker, "Leakage current through the poly-crystalline HfO2: Trap densities at grains and grain boundaries," Journal of Applied Physics, vol. 114, no. 13, p. 134503, 2013.
    [5.35] H. Mulaosmanovic, J. Ocker, S. Müller, U. Schroeder, J. Müller, P. Polakowski, S. Flachowsky, R. van Bentum, T. Mikolajick, and S. Slesazeck, "Switching kinetics in nanoscale hafnium oxide based ferroelectric field-effect transistors," ACS Applied Materials & Interfaces, vol. 9, no. 4, pp. 3792-3798, 2017.
    [5.36] A. K. Tagantsev, I. Stolichnov, N. Setter, J. S. Cross, and M. Tsukada, "Non-Kolmogorov-Avrami switching kinetics in ferroelectric thin films," Physical Review B, vol. 66, no. 21, p. 214109, 2002.
    [5.37] M. H. Park, D. H. Lee, K. Yang, J.-Y. Park, G. T. Yu, H. W. Park, M. Materano, T. Mittmann, P. D. Lomenzo, T. Mikolajick, U. Schroeder, and C. S. Hwang, "Review of defect chemistry in fluorite-structure ferroelectrics for future electronic devices," Journal of Materials Chemistry C, vol. 8, no. 31, pp. 10526-10550, 2020.
    [5.38] B. Buyantogtokh, V. Gaddam, and S. Jeon, "Effect of high pressure anneal on switching dynamics of ferroelectric hafnium zirconium oxide capacitors," Journal of Applied Physics, vol. 129, no. 24, p. 244106, 2021.
    [5.39] A. Dimoulas, G. Mavrou, G. Vellianitis, E. Evangelou, N. Boukos, M. Houssa, and M. Caymax, "HfO2 high-κ gate dielectrics on Ge (100) by atomic oxygen beam deposition," Applied Physics Letters, vol. 86, no. 3, p. 032908, 2005.
    [5.40] A. Dimoulas, D. P. Brunco, S. Ferrari, J. W. Seo, Y. Panayiotatos, A. Sotiropoulos, T. Conard, M. Caymax, S. Spiga, M. Fanciulli, C. Dieker, E. K. Evangelou, S. Galata, M. Houssa, and M. M. Heyns, "Interface engineering for Ge metal-oxide–semiconductor devices," Thin Solid Films, vol. 515, no. 16, pp. 6337-6343, 2007.
    [5.41] C. Zacharaki, P. Tsipas, S. Chaitoglou, L. Bégon-Lours, M. Halter, and A. Dimoulas, "Reliability aspects of ferroelectric TiN/Hf0.5Zr0.5O2/Ge capacitors grown by plasma assisted atomic oxygen deposition," Applied Physics Letters, vol. 117, no. 21, p. 212905, 2020.
    [5.42] J. Hur, N. Tasneem, G. Choe, P. Wang, Z. Wang, A. I. Khan, and S. Yu, "Direct comparison of ferroelectric properties in Hf0.5Zr0.5O2 between thermal and plasma-enhanced atomic layer deposition," Nanotechnology, vol. 31, no. 50, p. 505707, 2020.
    [5.43] M. H. Park, Y. H. Lee, T. Mikolajick, U. Schroeder, and C. S. Hwang, "Thermodynamic and kinetic origins of ferroelectricity in fluorite structure oxides," Advanced Electronic Materials, vol. 5, no. 3, p. 1800522, 2019.
    [5.44] H. W. Cho, P. Pujar, M. Choi, S. Kang, S. Hong, J. Park, S. Baek, Y. Kim, J. Lee, and S. Kim, "Direct growth of orthorhombic Hf0.5Zr0.5O2 thin films for hysteresis-free MoS2 negative capacitance field-effect transistors," npj 2D Materials and Applications, vol. 5, no. 1, p. 46, 2021.
    [5.45] Y. Goh, S. H. Cho, S.-H. K. Park, and S. Jeon, "Oxygen vacancy control as a strategy to achieve highly reliable hafnia ferroelectrics using oxide electrode," Nanoscale, vol. 12, no. 16, pp. 9024-9031, 2020.
    [5.46] M. Lederer, A. Reck, K. Mertens, R. Olivo, P. Bagul, A. Kia, B. Volkmann, T. Kämpfe, K. Seidel, and L. M. Eng, "Impact of the SiO2 interface layer on the crystallographic texture of ferroelectric hafnium oxide," Applied Physics Letters, vol. 118, no. 1, p. 012901, 2021.
    [5.47] K. Maekawa, T. Yamaguchi, T. Ohara, A. Amo, E. Tsukuda, K. Sonoda, H. Yanagita, M. Inoue, M. Matsuura, and T. Yamashita, "Impact of homogeneously dispersed Al nanoclusters by Si-monolayer insertion into Hf0.5Zr0.5O2 film on FeFET memory array with tight threshold voltage distribution," in 2019 IEEE International Electron Devices Meeting (IEDM), 2019, pp. 15.4.1-15.4.4.
    [5.48] Y. S. Liu and P. Su, "Variability analysis for ferroelectric FET nonvolatile memories considering random ferroelectric-dielectric phase distribution," IEEE Electron Device Letters, vol. 41, no. 3, pp. 369-372, 2020.
    [5.49] K. Y. Chen, Y. H. Huang, R. W. Kao, Y. X. Lin, K. Y. Hsieh, and Y. H. Wu, "Enhanced reliability of ferroelectric HfZrOx on semiconductor by using epitaxial SiGe as substrate," IEEE Transactions on Electron Devices, vol. 66, no. 8, pp. 3636-3639, 2019.
    [5.50] E. Yurchuk, J. Müller, S. Müller, J. Paul, M. Pešić, R. v. Bentum, U. Schroeder, and T. Mikolajick, "Charge-trapping phenomena in HfO2-based FeFET-type nonvolatile memories," IEEE Transactions on Electron Devices, vol. 63, no. 9, pp. 3501-3507, 2016.
    [5.51] S. Deng, Z. Liu, X. Li, T. P. Ma, and K. Ni, "Guidelines for ferroelectric FET reliability optimization: Charge matching," IEEE Electron Device Letters, vol. 41, no. 9, pp. 1348-1351, 2020.
    [5.52] P. Buragohain, A. Erickson, P. Kariuki, T. Mittmann, C. Richter, P. D. Lomenzo, H. Lu, T. Schenk, T. Mikolajick, U. Schroeder, and A. Gruverman, "Fluid imprint and inertial switching in ferroelectric La:HfO2 capacitors," ACS Applied Materials & Interfaces, vol. 11, no. 38, pp. 35115-35121, 2019.
    [5.53] Y. Higashi, N. Ronchi, B. Kaczer, K. Banerjee, S. R. C. McMitchell, B. J. O’Sullivan, S. Clima, A. Minj, U. Celano, L. D. Piazza, M. Suzuki, D. Linten, and J. V. Houdt, "Impact of charge trapping on imprint and its recovery in HfO2 based FeFET," in 2019 IEEE International Electron Devices Meeting (IEDM), 2019, pp. 15.6.1-15.6.4.
    [5.54] K. Takada, S. Takarae, K. Shimamoto, N. Fujimura, and T. Yoshimura, "Time-dependent imprint in Hf0.5Zr0.5O2 ferroelectric thin films," Advanced Electronic Materials, vol. 7, no. 8, p. 2100151, 2021.
    [5.55] F. Mehmood, M. Hoffmann, P. D. Lomenzo, C. Richter, M. Materano, T. Mikolajick, and U. Schroeder, "Bulk depolarization fields as a major contributor to the ferroelectric reliability performance in lanthanum doped Hf0.5Zr0.5O2 capacitors," Advanced Materials Interfaces, vol. 6, no. 21, p. 1901180, 2019.
    [5.56] H.-K. Peng, C.-Y. Chan, K.-Y. Chen, and Y.-H. Wu, "Enabling large memory window and high reliability for FeFET memory by integrating AlON interfacial layer," Applied Physics Letters, vol. 118, no. 10, p. 103503, 2021.

    Chapter6
    [6.1] Y. D. Lin, P. C. Yeh, Y. T. Tang, J. W. Su, H. Y. Yang, Y. H. Chen, C. P. Lin, P. S. Yeh, J. C. Chen, P. J. Tzeng, M. H. Lee, T. H. Hou, S. S. Sheu, W. C. Lo, and C. I. Wu, "Improving edge dead domain and endurance in scaled HfZrOx FeRAM," in 2021 IEEE International Electron Devices Meeting (IEDM), 2021, pp. 6.4.1-6.4.4.
    [6.2] T. Francois, L. Grenouillet, J. Coignus, P. Blaise, C. Carabasse, N. Vaxelaire, T. Magis, F. Aussenac, V. Loup, C. Pellissier, S. Slesazeck, V. Havel, C. Richter, A. Makosiej, B. Giraud, E. T. Breyer, M. Materano, P. Chiquet, M. Bocquet, E. Nowak, U. Schroeder, and F. Gaillard, "Demonstration of BEOL-compatible ferroelectric Hf0.5Zr0.5O2 scaled FeRAM co-integrated with 130nm CMOS for embedded NVM applications," in 2019 IEEE International Electron Devices Meeting (IEDM), 2019, pp. 15.7.1-15.7.4.
    [6.3] T. Ali, P. Polakowski, K. Kühnel, M. Czernohorsky, T. Kämpfe, M. Rudolph, B. Pätzold, D. Lehninger, F. Müller, R. Olivo, M. Lederer, R. Hoffmann, P. Steinke, K. Zimmermann, U. Mühle, K. Seidel, and J. Müller, "A multilevel FeFET memory device based on laminated HSO and HZO ferroelectric layers for high-density storage," in 2019 IEEE International Electron Devices Meeting (IEDM), 2019, pp. 28.7.1-28.7.4.
    [6.4] S. De, D. D. Lu, H. H. Le, S. Mazumder, Y. J. Lee, W. C. Tseng, B. H. Qiu, M. A. Baig, P. J. Sung, C. J. Su, C. T. Wu, W. F. Wu, W. K. Yeh, and Y. H. Wang, "Ultra-low power robust 3bit/cell Hf0.5Zr0.5O2 ferroelectric FinFET with high endurance for advanced computing-in-memory technology," in 2021 Symposium on VLSI Technology, 2021, pp. 1-2.
    [6.5] C. Y. Liao, K. Y. Hsiang, F. C. Hsieh, S. H. Chiang, S. H. Chang, J. H. Liu, C. F. Lou, C. Y. Lin, T. C. Chen, C. S. Chang, and M. H. Lee, "Multibit ferroelectric FET based on nonidentical double HfZrO2 for high-density nonvolatile memory," IEEE Electron Device Letters, vol. 42, no. 4, pp. 617-620, 2021.
    [6.6] M. Jerry, P. Y. Chen, J. Zhang, P. Sharma, K. Ni, S. Yu, and S. Datta, "Ferroelectric FET analog synapse for acceleration of deep neural network training," in 2017 IEEE International Electron Devices Meeting (IEDM), 2017, pp. 6.2.1-6.2.4.
    [6.7] K. Y. Hsiang, C. Y. Liao, K. T. Chen, Y. Y. Lin, C. Y. Chueh, C. Chang, Y. J. Tseng, Y. J. Yang, S. T. Chang, M. H. Liao, T. H. Hou, C. H. Wu, C. C. Ho, J. P. Chiu, C. S. Chang, and M. H. Lee, "Ferroelectric HfZrO2 with electrode engineering and stimulation schemes as symmetric analog synaptic weight element for deep neural network training," IEEE Transactions on Electron Devices, vol. 67, no. 10, pp. 4201-4207, 2020.
    [6.8] S. Oh, T. Kim, M. Kwak, J. Song, J. Woo, S. Jeon, I. K. Yoo, and H. Hwang, "HfZrOx-based ferroelectric synapse device with 32 levels of conductance states for neuromorphic applications," IEEE Electron Device Letters, vol. 38, no. 6, pp. 732-735, 2017.
    [6.9] K. Lee, H.-J. Lee, T. Y. Lee, H. H. Lim, M. S. Song, H. K. Yoo, D. I. Suh, J. G. Lee, Z. Zhu, A. Yoon, M. R. MacDonald, X. Lei, K. Park, J. Park, J. H. Lee, and S. C. Chae, "Stable subloop behavior in ferroelectric Si-doped HfO2," ACS Applied Materials & Interfaces, vol. 11, no. 42, pp. 38929-38936, 2019.
    [6.10] K. Ni, J. Smith, H. Ye, B. Grisafe, G. B. Rayner, A. Kummel, and S. Datta, "A novel ferroelectric superlattice based multi-level cell non-volatile memory," in 2019 IEEE International Electron Devices Meeting (IEDM), 2019, pp. 28.8.1-28.8.4.
    [6.11] Y. Xu, Y. Yang, S. Zhao, T. Gong, P. Jiang, Y. Wang, P. Yuan, Z. Dang, Y. Chen, S. Lv, Y. Ding, Y. Wang, J. Bi, Q. Luo, and M. Liu, "Improved multi-bit storage reliablity by design of ferroelectric modulated anti-ferroelectric memory," in 2021 IEEE International Electron Devices Meeting (IEDM), 2021, pp. 6.2.1-6.2.4.
    [6.12] W. Hamouda, A. Pancotti, C. Lubin, L. Tortech, C. Richter, T. Mikolajick, U. Schroeder, and N. Barrett, "Physical chemistry of the TiN/Hf0.5Zr0.5O2 interface," Journal of Applied Physics, vol. 127, no. 6, p. 064105, 2020.
    [6.13] A. Toriumi, L. Xu, Y. Mori, X. Tian, P. D. Lomenzo, H. Mulaosmanovic, M. Materano, T. Mikolajick, and U. Schroeder, "Material perspectives of HfO2-based ferroelectric films for device applications," in 2019 IEEE International Electron Devices Meeting (IEDM), 2019, pp. 15.1.1-15.1.4.
    [6.14] X. Tian, S. Shibayama, T. Nishimura, T. Yajima, S. Migita, and A. Toriumi, "Evolution of ferroelectric HfO2 in ultrathin region down to 3 nm," Applied Physics Letters, vol. 112, no. 10, p. 102902, 2018.
    [6.15] T. Onaya, T. Nabatame, N. Sawamoto, A. Ohi, N. Ikeda, T. Nagata, and A. Ogura, "Improvement in ferroelectricity of HfxZr1-xO2 thin films using top- and bottom-ZrO2 nucleation layers," APL Materials, vol. 7, no. 6, p. 061107, 2019.
    [6.16] V. Gaddam, D. Das, and S. Jeon, "Insertion of HfO2 seed/dielectric layer to the ferroelectric HZO Films for heightened remanent polarization in MFM capacitors," IEEE Transactions on Electron Devices, vol. 67, no. 2, pp. 745-750, 2020.
    [6.17] S. J. Lee, M. J. Kim, T. Y. Lee, T. I. Lee, J. H. Bong, S. W. Shin, S. H. Kim, W. S. Hwang, and B. J. Cho, "Effect of ZrO2 interfacial layer on forming ferroelectric HfxZryOz on Si substrate," AIP Advances, vol. 9, no. 12, p. 125020, 2019.
    [6.18] T. Onaya, T. Nabatame, M. Inoue, T. Sawada, H. Ota, and Y. Morita, "Wake-up-free properties and high fatigue resistance of HfxZr1-xO2-based metal–ferroelectric–semiconductor using top ZrO2 nucleation layer at low thermal budget (300 °C)," APL Materials, vol. 10, no. 5, p. 051110, 2022.
    [6.19] M. Hyuk Park, H. Joon Kim, Y. Jin Kim, W. Lee, T. Moon, and C. Seong Hwang, "Evolution of phases and ferroelectric properties of thin Hf0.5Zr0.5O2 films according to the thickness and annealing temperature," Applied Physics Letters, vol. 102, no. 24, p. 242905, 2013.
    [6.20] H. A. Hsain, Y. Lee, M. Materano, T. Mittmann, A. Payne, T. Mikolajick, U. Schroeder, G. N. Parsons, and J. L. Jones, "Many routes to ferroelectric HfO2: A review of current deposition methods," Journal of Vacuum Science & Technology A, vol. 40, no. 1, p. 010803, 2021.
    [6.21] C. H. Ma, J. H. Huang, and H. Chen, "Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction," Thin Solid Films, vol. 418, no. 2, pp. 73-78, 2002.
    [6.22] V. Gaddam, D. Das, T. Jung, and S. Jeon, "Ferroelectricity enhancement in Hf0.5Zr0.5O2 based tri-layer capacitors at low-temperature (350 °C) annealing process," IEEE Electron Device Letters, vol. 42, no. 6, pp. 812-815, 2021.
    [6.23] W. Xiao, C. Liu, Y. Peng, S. Zheng, Q. Feng, C. Zhang, J. Zhang, Y. Hao, M. Liao, and Y. Zhou, "Performance improvement of Hf0.5Zr0.5O2-based ferroelectric-field-effect transistors with ZrO2 seed layers," IEEE Electron Device Letters, vol. 40, no. 5, pp. 714-717, 2019.
    [6.24] Y.-J. Lin, C.-Y. Teng, C. Hu, C.-J. Su, and Y.-C. Tseng, "Impacts of surface nitridation on crystalline ferroelectric phase of Hf1-xZrxO2 and ferroelectric FET performance," Applied Physics Letters, vol. 119, no. 19, p. 192102, 2021.
    [6.25] M. Pešić, F. P. G. Fengler, L. Larcher, A. Padovani, T. Schenk, E. D. Grimley, X. Sang, J. M. LeBeau, S. Slesazeck, U. Schroeder, and T. Mikolajick, "Physical mechanisms behind the field-cycling behavior of HfO2-based ferroelectric capacitors," Advanced Functional Materials, vol. 26, no. 25, pp. 4601-4612, 2016.
    [6.26] T. Schenk, M. Hoffmann, J. Ocker, M. Pešić, T. Mikolajick, and U. Schroeder, "Complex internal bias fields in ferroelectric hafnium oxide," ACS Applied Materials & Interfaces, vol. 7, no. 36, pp. 20224-20233, 2015.
    [6.27] F. Ali, X. Liu, D. Zhou, X. Yang, J. Xu, T. Schenk, J. Müller, U. Schroeder, F. Cao, and X. Dong, "Silicon-doped hafnium oxide anti-ferroelectric thin films for energy storage," Journal of Applied Physics, vol. 122, no. 14, p. 144105, 2017.
    [6.28] P. Cai, H. Li, Z. Liu, T. Zhu, M. Zeng, Z. Ji, Y. Wu, A. Padovani, L. Larcher, M. Pešić, R. Wang, and R. Huang, "Investigation of coercive field shift during cycling in HfZrOₓ ferroelectric capacitors," IEEE Transactions on Electron Devices, vol. 69, no. 5, pp. 2384-2390, 2022.

    Chapter7
    [7.1] V. Milo, G. Malavena, C. Monzio Compagnoni, and D. Ielmini, "Memristive and CMOS Devices for Neuromorphic Computing," Materials, vol. 13, no. 1, p. 166, 2020.
    [7.2] H. Mulaosmanovic, S. Slesazeck, J. Ocker, M. Pesic, S. Muller, S. Flachowsky, J. Müller, P. Polakowski, J. Paul, S. Jansen, S. Kolodinski, C. Richter, S. Piontek, T. Schenk, A. Kersch, C. Kunneth, R. v. Bentum, U. Schroder, and T. Mikolajick, "Evidence of single domain switching in hafnium oxide based FeFETs: Enabler for multi-level FeFET memory cells," in 2015 IEEE International Electron Devices Meeting (IEDM), 2015, pp. 26.8.1-26.8.3.
    [7.3] B. Zeng, M. Liao, Q. Peng, W. Xiao, J. Liao, S. Zheng, and Y. Zhou, "2-bit/cell operation of Hf0.5Zr0.5O2 based FeFET memory devices for NAND applications," IEEE Journal of the Electron Devices Society, vol. 7, pp. 551-556, 2019.
    [7.4] H. Mulaosmanovic, E. T. Breyer, T. Mikolajick, and S. Slesazeck, "Ferroelectric FETs with 20-nm-thick HfO2 layer for large memory window and high performance," IEEE Transactions on Electron Devices, vol. 66, no. 9, pp. 3828-3833, 2019.
    [7.5] T. Ali, P. Polakowski, K. Kühnel, M. Czernohorsky, T. Kämpfe, M. Rudolph, B. Pätzold, D. Lehninger, F. Müller, R. Olivo, M. Lederer, R. Hoffmann, P. Steinke, K. Zimmermann, U. Mühle, K. Seidel, and J. Müller, "A multilevel FeFET memory device based on laminated HSO and HZO ferroelectric layers for high-density storage," in 2019 IEEE International Electron Devices Meeting (IEDM), 2019, pp. 28.7.1-28.7.4.
    [7.6] C. Y. Liao, K. Y. Hsiang, F. C. Hsieh, S. H. Chiang, S. H. Chang, J. H. Liu, C. F. Lou, C. Y. Lin, T. C. Chen, C. S. Chang, and M. H. Lee, "Multibit ferroelectric FET based on nonidentical double HfZrO2 for high-density nonvolatile memory," IEEE Electron Device Letters, vol. 42, no. 4, pp. 617-620, 2021.
    [7.7] H. Mulaosmanovic, D. Kleimaier, S. Dünkel, S. Beyer, T. Mikolajick, and S. Slesazeck, "Ferroelectric transistors with asymmetric double gate for memory window exceeding 12 V and disturb-free read," Nanoscale, vol. 13, no. 38, pp. 16258-16266, 2021.
    [7.8] T. Schenk, U. Schroeder, M. Pešić, M. Popovici, Y. V. Pershin, and T. Mikolajick, "Electric field cycling behavior of ferroelectric hafnium oxide," ACS Applied Materials & Interfaces, vol. 6, no. 22, pp. 19744-19751, 2014.
    [7.9] C. Liu, F. Liu, Q. Luo, P. Huang, X. X. Xu, H. B. Lv, Y. D. Zhao, X. Y. Liu, and J. F. Kang, "Role of oxygen vacancies in electric field cycling behaviors of ferroelectric hafnium oxide," in 2018 IEEE International Electron Devices Meeting (IEDM), 2018, pp. 16.4.1-16.4.4.
    [7.10] S. De, D. D. Lu, H. H. Le, S. Mazumder, Y. J. Lee, W. C. Tseng, B. H. Qiu, M. A. Baig, P. J. Sung, C. J. Su, C. T. Wu, W. F. Wu, W. K. Yeh, and Y. H. Wang, "Ultra-low power robust 3 bit/cell Hf0.5Zr0.5O2 ferroelectric FinFET with high endurance for advanced computing-in-memory technology," in 2021 Symposium on VLSI Technology, 2021, pp. 1-2.
    [7.11] C. Li, F. Müller, T. Ali, R. Olivo, M. Imani, S. Deng, C. Zhuo, T. Kämpfe, X. Yin, and K. Ni, "A scalable design of multi-bit ferroelectric content addressable memory for data-centric computing," in 2020 IEEE International Electron Devices Meeting (IEDM), 2020, pp. 29.3.1-29.3.4.
    [7.12] J. Müller, T. S. Böscke, U. Schröder, S. Mueller, D. Bräuhaus, U. Böttger, L. Frey, and T. Mikolajick, "Ferroelectricity in simple binary ZrO2 and HfO2," Nano Letters, vol. 12, no. 8, pp. 4318-4323, 2012.
    [7.13] Y.-J. Lin, C.-Y. Teng, C. Hu, C.-J. Su, and Y.-C. Tseng, "Impacts of surface nitridation on crystalline ferroelectric phase of Hf1-xZrxO2 and ferroelectric FET performance," Applied Physics Letters, vol. 119, no. 19, p. 192102, 2021.
    [7.14] H. Mulaosmanovic, S. Dünkel, D. Kleimaier, A. e. Kacimi, S. Beyer, E. T. Breyer, T. Mikolajick, and S. Slesazeck, "Effect of the Si doping content in HfO2 film on the key performance metrics of ferroelectric FETs," IEEE Transactions on Electron Devices, vol. 68, no. 9, pp. 4773-4779, 2021.
    [7.15] S. M. Yang, J.-G. Yoon, and T. W. Noh, "Nanoscale studies of defect-mediated polarization switching dynamics in ferroelectric thin film capacitors," Current Applied Physics, vol. 11, no. 5, pp. 1111-1125, 2011.
    [7.16] H. K. Yoo, J. S. Kim, Z. Zhu, Y. S. Choi, A. Yoon, M. R. MacDonald, X. Lei, T. Y. Lee, D. Lee, S. C. Chae, J. Park, D. Hemker, J. G. Langan, Y. Nishi, and S. J. Hong, "Engineering of ferroelectric switching speed in Si doped HfO2 for high-speed 1T-FERAM application," in 2017 IEEE International Electron Devices Meeting (IEDM), 2017, pp. 19.6.1-19.6.4.
    [7.17] E. Yurchuk, J. Müller, S. Müller, J. Paul, M. Pešić, R. v. Bentum, U. Schroeder, and T. Mikolajick, "Charge-trapping phenomena in HfO2-based FeFET-type nonvolatile memories," IEEE Transactions on Electron Devices, vol. 63, no. 9, pp. 3501-3507, 2016.
    [7.18] K. Ni, P. Sharma, J. Zhang, M. Jerry, J. A. Smith, K. Tapily, R. Clark, S. Mahapatra, and S. Datta, "Critical role of interlayer in Hf0.5Zr0.5O2 ferroelectric FET nonvolatile memory performance," IEEE Transactions on Electron Devices, vol. 65, no. 6, pp. 2461-2469, 2018.
    [7.19] S. Li, D. Zhou, Z. Shi, M. Hoffmann, T. Mikolajick, and U. Schroeder, "Involvement of unsaturated switching in the endurance cycling of Si-doped HfO2 ferroelectric thin films," Advanced Electronic Materials, vol. 6, no. 8, p. 2000264, 2020.
    [7.20] M. S. Song, T. Y. Lee, K. Lee, K. C. Lee, and S. C. Chae, "Electric field cycling-mediated variations in defect distributions associated with wake-up and split-up behaviors of a ferroelectric Si-doped HfO2 thin film," Applied Physics Letters, vol. 117, no. 16, p. 162903, 2020.
    [7.21] K. Toprasertpong, K. Tahara, M. Takenaka, and S. Takagi, "Evaluation of polarization characteristics in metal/ferroelectric/semiconductor capacitors and ferroelectric field-effect transistors," Applied Physics Letters, vol. 116, no. 24, p. 242903, 2020.
    [7.22] H. Zhou, J. Ocker, A. Padovani, M. Pesic, M. Trentzsch, S. Dünkel, H. Mulaosmanovic, S. Slesazeck, L. Larcher, S. Beyer, S. Müller, and T. Mikolajick, "Application and benefits of target programming algorithms for ferroelectric HfO2 transistors," in 2020 IEEE International Electron Devices Meeting (IEDM), 2020, pp. 18.6.1-18.6.4.

    Chapter8
    [8.1] M. Si, Z. Lin, J. Noh, J. Li, W. Chung, and P. D. Ye, "The impact of channel semiconductor on the memory characteristics of ferroelectric field-effect transistors," IEEE Journal of the Electron Devices Society, vol. 8, pp. 846-849, 2020.
    [8.2] C. Zacharaki, S. Chaitoglou, N. Siannas, P. Tsipas, and A. Dimoulas, "Hf0.5Zr0.5O2-based germanium ferroelectric p-FETs for nonvolatile memory applications," ACS Applied Electronic Materials, vol. 4, no. 6, pp. 2815-2821, 2022.
    [8.3] Y. Goh and S. Jeon, "The effect of the bottom electrode on ferroelectric tunnel junctions based on CMOS-compatible HfO2," Nanotechnology, vol. 29, no. 33, p. 335201, 2018.
    [8.4] W. Chung, M. Si, P. R. Shrestha, J. P. Campbell, K. P. Cheung, and P. D. Ye, "First direct experimental studies of Hf0.5Zr0.5O2 ferroelectric polarization switching down to 100-picosecond in sub-60mV/dec germanium ferroelectric nanowire FETs," in 2018 IEEE Symposium on VLSI Technology, 2018, pp. 89-90.
    [8.5] W. Chung, M. Si, and P. D. Ye, "First demonstration of Ge ferroelectric nanowire FET as synaptic device for online learning in neural network with high number of conductance state and Gmax/Gmin," in 2018 IEEE International Electron Devices Meeting (IEDM), 2018, pp. 15.2.1-15.2.4.
    [8.6] H. Liu, C. Wang, G. Han, J. Li, Y. Peng, Y. Liu, X. Wang, N. Zhong, C. Duan, X. Wang, N. Xu, T. J. K. Liu, and Y. Hao, "ZrO2 ferroelectric FET for non-volatile memory application," IEEE Electron Device Letters, vol. 40, no. 9, pp. 1419-1422, 2019.
    [8.7] C. Y. Chan, K. Y. Chen, H. K. Peng, and Y. H. Wu, "FeFET memory featuring large memory window and robust endurance of long-pulse cycling by interface engineering using high-k AlON," in 2020 IEEE Symposium on VLSI Technology, 2020, pp. 1-2.
    [8.8] T. Ali, P. Polakowski, K. Kühnel, M. Czernohorsky, T. Kämpfe, M. Rudolph, B. Pätzold, D. Lehninger, F. Müller, R. Olivo, M. Lederer, R. Hoffmann, P. Steinke, K. Zimmermann, U. Mühle, K. Seidel, and J. Müller, "A multilevel FeFET memory device based on laminated HSO and HZO ferroelectric layers for high-density storage," in 2019 IEEE International Electron Devices Meeting (IEDM), 2019, pp. 28.7.1-28.7.4.
    [8.9] H. Mulaosmanovic, E. T. Breyer, T. Mikolajick, and S. Slesazeck, "Ferroelectric FETs with 20-nm-thick HfO2 layer for large memory window and high performance," IEEE Transactions on Electron Devices, vol. 66, no. 9, pp. 3828-3833, 2019.
    [8.10] S. De, D. D. Lu, H. H. Le, S. Mazumder, Y. J. Lee, W. C. Tseng, B. H. Qiu, M. A. Baig, P. J. Sung, C. J. Su, C. T. Wu, W. F. Wu, W. K. Yeh, and Y. H. Wang, "Ultra-low power robust 3 bit/cell Hf0.5Zr0.5O2 ferroelectric FinFET with high endurance for advanced computing-in-memory technology," in 2021 Symposium on VLSI Technology, 2021, pp. 1-2.
    [8.11] G. A. Boni, C. M. Istrate, C. Zacharaki, P. Tsipas, S. Chaitoglou, E. K. Evangelou, A. Dimoulas, I. Pintilie, and L. Pintilie, "The role of interface defect states in n- and p-type Ge metal-ferroelectric-semiconductor structures with Hf0.5Zr0.5O2 ferroelectric," physica status solidi (a), vol. 218, no. 4, p. 2000500, 2021.
    [8.12] C. Zacharaki, P. Tsipas, S. Chaitoglou, L. Bégon-Lours, M. Halter, and A. Dimoulas, "Reliability aspects of ferroelectric TiN/Hf0.5Zr0.5O2/Ge capacitors grown by plasma assisted atomic oxygen deposition," Applied Physics Letters, vol. 117, no. 21, p. 212905, 2020.
    [8.13] H. K. Peng, T. H. Kao, Y. C. Kao, P. J. Wu, and Y. H. Wu, "Reduced asymmetric memory window between Si-based n- and p-FeFETs with scaled ferroelectric HfZrOₓ and AlON interfacial layer," IEEE Electron Device Letters, vol. 42, no. 6, pp. 835-838, 2021.
    [8.14] R. Ichihara, K. Suzuki, H. Kusai, K. Ariyoshi, K. Akari, K. Takano, K. M. Y. Kamiya, K. Takahashi, H. Miyagawa, Y. Kamimuta, K. Sakuma, and M. Saitoh, "Re-examination of Vth window and reliability in HfO2 FeFET based on the direct extraction of spontaneous polarization and trap charge during memory operation," in 2020 IEEE Symposium on VLSI Technology, 2020, pp. 1-2.
    [8.15] M. Ke, M. Takenaka, and S. Takagi, "Slow trap properties and generation in Al2O3/GeOx/Ge MOS interfaces formed by plasma oxidation process," ACS Applied Electronic Materials, vol. 1, no. 3, pp. 311-317, 2019.
    [8.16] C. Fu, Y. Wang, P. Xu, L. Yue, F. Sun, D. W. Zhang, S.-L. Zhang, J. Luo, C. Zhao, and D. Wu, "Understanding the microwave annealing of silicon," AIP Advances, vol. 7, no. 3, p. 035214, 2017.
    [8.17] K. Martens, C. O. Chui, G. Brammertz, B. D. Jaeger, D. Kuzum, M. Meuris, M. Heyns, T. Krishnamohan, K. Saraswat, H. E. Maes, and G. Groeseneken, "On the correct extraction of interface trap density of MOS devices with high-mobility semiconductor substrates," IEEE Transactions on Electron Devices, vol. 55, no. 2, pp. 547-556, 2008.
    [8.18] M. Caymax, S. Van Elshocht, M. Houssa, A. Delabie, T. Conard, M. Meuris, M. M. Heyns, A. Dimoulas, S. Spiga, M. Fanciulli, J. W. Seo, and L. V. Goncharova, "HfO2 as gate dielectric on Ge: Interfaces and deposition techniques," Materials Science and Engineering: B, vol. 135, no. 3, pp. 256-260, 2006.
    [8.19] T.-L. Shih, Y.-H. Su, T.-C. Kuo, W.-H. Lee, and M. I. Current, "Effect of microwave annealing on electrical characteristics of TiN/Al/TiN/HfO2/Si MOS capacitors," Applied Physics Letters, vol. 111, no. 1, p. 012101, 2017.
    [8.20] S. K. Wang, K. Kita, C. H. Lee, T. Tabata, T. Nishimura, K. Nagashio, and A. Toriumi, "Desorption kinetics of GeO from GeO2/Ge structure," Journal of Applied Physics, vol. 108, no. 5, p. 054104, 2010.
    [8.21] Y. J. Lee, S. S. Chuang, C. I. Liu, F. K. Hsueh, P. J. Sung, H. C. Chen, C. T. Wu, K. L. Lin, J. Y. Yao, Y. L. Shen, M. L. Kuo, C. H. Yang, G. L. Luo, H. W. Chen, C. H. Lai, M. I. Current, C. Y. Wu, Y. M. Wan, T. Y. Tseng, C. Hu, and F. L. Yang, "Full low temperature microwave processed Ge CMOS achieving diffusion-less junction and ultrathin 7.5 nm Ni mono-germanide," in 2012 International Electron Devices Meeting, 2012, pp. 23.3.1-23.3.4.
    [8.22] D. B. Ruan, K. S. Chang-Liao, S. H. Yi, H. I. Yeh, and G. T. Liu, "Low equivalent oxide thickness and leakage current of pGe MOS device by removing low oxidation state in GeOx with H2 plasma treatment," IEEE Electron Device Letters, vol. 41, no. 4, pp. 529-532, 2020.
    [8.23] A. Goda and K. Parat, "Scaling directions for 2D and 3D NAND cells," in 2012 International Electron Devices Meeting, 2012, pp. 2.1.1-2.1.4.
    [8.24] S. Dünkel, M. Trentzsch, R. Richter, P. Moll, C. Fuchs, O. Gehring, M. Majer, S. Wittek, B. Müller, T. Melde, H. Mulaosmanovic, S. Slesazeck, S. Müller, J. Ocker, M. Noack, D. A. Löhr, P. Polakowski, J. Müller, T. Mikolajick, J. Höntschel, B. Rice, J. Pellerin, and S. Beyer, "A FeFET based super-low-power ultra-fast embedded NVM technology for 22nm FDSOI and beyond," in 2017 IEEE International Electron Devices Meeting (IEDM), 2017, pp. 19.7.1-19.7.4.
    [8.25] W. Xiao, C. Liu, Y. Peng, S. Zheng, Q. Feng, C. Zhang, J. Zhang, Y. Hao, M. Liao, and Y. Zhou, "Performance improvement of Hf0.5Zr0.5O2-based ferroelectric-field-effect transistors with ZrO2 seed layers," IEEE Electron Device Letters, vol. 40, no. 5, pp. 714-717, 2019.
    [8.26] M.-K. Kim, I.-J. Kim, and J.-S. Lee, "CMOS-compatible ferroelectric NAND flash memory for high-density, low-power, and high-speed three-dimensional memory," Science Advances, vol. 7, no. 3, p. eabe1341, 2021.
    [8.27] M. Pesic, A. Padovani, S. Slcsazeck, T. Mikolajick, and L. Larcher, "Deconvoluting charge trapping and nucleation interplay in FeFETs: Kinetics and reliability," in 2018 IEEE International Electron Devices Meeting (IEDM), 2018, pp. 25.1.1-25.1.4.
    [8.28] D. Kleimaier, H. Mulaosmanovic, S. Dünkel, S. Beyer, S. Soss, S. Slesazeck, and T. Mikolajick, "Demonstration of a p-Type ferroelectric FET with immediate read-after-write capability," IEEE Electron Device Letters, vol. 42, no. 12, pp. 1774-1777, 2021.

    QR CODE