簡易檢索 / 詳目顯示

研究生: 郭祐豪
Kuo, Yu-Hao
論文名稱: 探討阿拉伯芥自噬相關基因與植物磷酸恆定之關聯性
Study of relationship between Arabidopsis autophagy-related genes and plant phosphate homeostasis
指導教授: 劉姿吟
Liu, Tzu-Yin
口試委員: 林淑怡
Lin, Shu-I
林維怡
Lin, Wei-Yi
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 39
中文關鍵詞: 細胞自噬磷酸缺乏植物磷酸恆定
外文關鍵詞: autophagy, phosphate starvation, plant phosphate homeostasis
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 過去在營養缺乏所誘導的植物細胞自噬研究中,以探討缺乏碳和氮源為主,但缺磷誘導自噬的研究甚少。本研究將探討阿拉伯芥自噬相關基因與植物磷酸恆定之關聯性。先前文獻已指出大量表現轉錄因子 PHOSPHATE STARVATION RESPONSE 1 (AtPHR1) 或液泡磷酸膜轉運蛋白 PHOSPHATE TRANSPORTER 5;1 (AtPHT5;1) 能活化植物缺磷反應基因。因此,我們利用菸草短暫表達系統大量表現 AtPHR1 和 AtPHT5;1 產生缺磷反應來觀察自噬相關基因 AtATG8f 在菸草表皮細胞中的表現與分佈型態。實驗結果顯示,在大量表現 AtPHR1 情況下,GFP-AtATG8f 呈現均勻表現在細胞質的形態。而大量表現 AtPHT5;1 情況下,細胞質中的 GFP-AtATG8f 受到缺磷反應影響,由均勻分布轉為零星的點狀訊號,可能是自噬作用活性提升使 GFP-AtATG8f 呈現自噬體的形態。我們推測大量表現 AtPHT5;1 造成細胞內產生缺磷反應對活化細胞自噬的影響較為直接。另一方面,我們觀察到阿拉伯芥轉殖株35S:GFP-AtATG8f 在缺磷和缺氮環境下,自噬體也能大量累積在成熟區、延長區和細胞分裂區三個根部發育區域。由於 GFP-AtATG8f 蛋白在根毛區域大量聚集,我們推測自噬體參與根毛生長發育或是吸收、回收營養的過程。我們將目前已知 AtATG8f 上的結合位點:LC3 docking site (LDS) 和 UIM docking site (UDS),同時進行點突變(Y50,A,L51A,I77A,F78A,I79A),並利用三分子綠螢光技術來探討阿拉伯芥AtATG8f 與泛素結合酶 PHOSPHATE 2 (AtPHO2) 和磷酸轉運蛋白 PHOSPHATE 1 (AtPHO1) 之間的交互作用。結果顯示 AtPHO1 和 AtATG8f 之間沒有交互作用,而 AtPHO2 與正常或具突變位 AtATG8f 皆有交互作用,表示 AtPHO2 可能參與細胞自噬,但其扮演的角色還需更深入探討。


    Most studies of plant nutrient deficiency-induced autophagy focused on carbon (C) and nitrogen (N) source, but little is known about phosphate (Pi) limitation-induced autophagy. In this study, we aimed to explore the involvement of the Arabidopsis autophagy-related genes (AtATGs) in plant Pi homeostasis. We overexpressed two Pi homeostasis-related genes, the Arabidopsis transcription factor PHOSPHATE STARVATION RESPONSE 1 (AtPHR1) and the vacuolar PHOSPHATE TRANSPORTER 5;1 (AtPHT5;1) in tobacco leaves by agroinfiltration. When AtPHR1 was overexpressed, GFP-AtATG8f localized in the cytosol; when AtPHT5;1 was overexpressed, GFP-AtATG8f showed a punctate pattern, which might result from increased formation of autophagosomes. AtPHT5;1 overexpression likely decreased the cytosolic phosphate level and thus induce autophagy. In the GFP-AtATG8f transgenic plants, a large number of autophagosomes were observed in the differentiation and elongation zones, and the apical meristem of roots under Pi and N deficiency, particularly in root hairs. We surmise that autophagosomes may participate in the growth and development of root hairs or their role in nutrient absorption and recycling. In addition, we generated a AtATG8f mutant variant with defective LC3 docking site (LDS) and UIM docking site (UDS) to investigate its interaction with the other two Pi homeostasis-related proteins, PHOSPHATE 1 (AtPHO1) and PHOSPHATE 2 (AtPHO2). The tripartite split-GFP association analysis showed that both the wild-type AtATG8f and mutated AtATG8f can interact with AtPHO2 but not AtPHO1, indicating that AtPHO2 may be involved in the regulation of autophagy.

    摘要 1 ABSTRACT 2 壹. 前言 一、 自噬作用歷史回顧 3 二、 植物細胞自噬與其作用機制 3 三、 ATG8家族蛋白參與細胞自噬的方式 4 四、 植物營養缺乏與自噬作用 6 五、 植物體內調控磷酸鹽恆定系統 7 六、 研究動機 9 貳. 實驗方法與材料 一、 阿拉伯芥與圓葉菸草種子表面消毒 10 二、 阿拉伯芥與圓葉菸草植物種植與生長條件 10 三、 基因轉殖載體設計與製作 11 四、 圓葉菸草短暫表達蛋白質系統 12 五、 建立阿拉伯芥轉殖株篩選流程 13 六、 反轉錄聚合酵素鏈式反應 13 七、 三分子綠螢光互補技術 14 (tripartite split-GFP complementation assay) 八、 共軛焦顯微鏡觀察 15 九、 化學用品製備及植物處理方法 15 參. 實驗結果 一、 以圓葉菸草短暫表達系統作為誘發缺磷反應與觀察植物細胞自噬之模型 17 二、 利用阿拉伯芥轉殖株觀察 AtATG2, AtATG5, AtATG9, AtATG16 及 18 AtATG8f 螢光融合蛋白的表現與分佈 三、 利用菸草短暫表達系統觀察 AtPHO2 與 AtATG8f 的交互作用 19 肆. 討論 一、 探討 GFP-AtATG8f 條件下於菸草短暫表達系統之表現與分佈 21 二、 探討阿拉伯芥轉殖株 AtATG2, AtATG5, AtATG9, AtATG16 及 21 AtATG8f 螢光融合白之表現與分佈 三、 AtPHO2 與 AtATG8f 交互作用之探討 23 伍. 圖表 圖一、 利用大量表達 AtPHR1 及 AtPHT5;1 誘發菸草缺磷反應基因 24 NbSPX3 之表現形態 圖二、 利用誘發菸草缺磷模型觀察 GFP-AtATG8f 之表現與分佈 25 圖三、 阿拉伯芥轉殖株中 AtATG2, 5, 9, 16 螢光融合蛋白在缺磷和缺 26 氮環境下的表現 圖四、 阿拉伯芥轉殖株中 GFP-AtATG8f 於缺磷和缺氮環境下的表現 27 圖五、 AtATG8f 與參與細胞自噬相關蛋白之表現位置 28 圖六、 AtATG8f 與交互作用蛋白之表現位置與形態 29 陸. 附錄 圖一、 利用生物資料庫 hfAIM 預測 AtPHO1, AtPHO2 蛋白上 AIM 30 序列 表一. 利用生物資料庫 iLIR 預測 AtPHO1, AtPHO2 蛋白上 AIM 32 序列 表二. 實驗使用之載體 33 表三. 引子序列 34 表四. 阿拉伯芥轉殖株篩選 35 柒. 參考文獻 36

    1. Clark Jr, S.L., Cellular differentiation in the kidneys of newborn mice studied with the electron microscope. The Journal of Cell Biology, 1957. 3(3): p. 349-362.
    2. Novikoff, A.B., The proximal tubule cell in experimental hydronephrosis. The Journal of biophysical and biochemical cytology, 1959. 6(1): p. 136.
    3. Takeshige, K., et al., Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. The Journal of cell biology, 1992. 119(2): p. 301-311.
    4. Tsukada, M. and Y. Ohsumi, Isolation and characterization of autophagy‐defective mutants of Saccharomyces cerevisiae. FEBS letters, 1993. 333(1-2): p. 169-174.
    5. Yang, Z. and D.J. Klionsky, An overview of the molecular mechanism of autophagy. Curr Top Microbiol Immunol, 2009. 335: p. 1-32.
    6. Zhuang, X., et al., ATG9 regulates autophagosome progression from the endoplasmic reticulum in Arabidopsis. Proc Natl Acad Sci U S A, 2017. 114(3): p. E426-E435.
    7. Le Bars, R., et al., ATG5 defines a phagophore domain connected to the endoplasmic reticulum during autophagosome formation in plants. Nat Commun, 2014. 5: p. 4121.
    8. Wang, Y., et al., ATG2, an autophagy‐related protein, negatively affects powdery mildew resistance and mildew‐induced cell death in Arabidopsis. The Plant Journal, 2011. 68(1): p. 74-87.
    9. Hofius, D., et al., Role of autophagy in disease resistance and hypersensitive response-associated cell death. Cell Death Differ, 2011. 18(8): p. 1257-62.
    10. Scott, S.V., et al., Cvt19 is a receptor for the cytoplasm-to-vacuole targeting pathway. Molecular cell, 2001. 7(6): p. 1131-1141.
    11. Okamoto, K., N. Kondo-Okamoto, and Y. Ohsumi, Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Developmental cell, 2009. 17(1): p. 87-97.
    12. Kanki, T., et al., Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Developmental cell, 2009. 17(1): p. 98-109.
    13. Novak, I., et al., Nix is a selective autophagy receptor for mitochondrial clearance. EMBO reports, 2010. 11(1): p. 45-51.
    14. Lamark, T., et al., NBR1 and p62 as cargo receptors for selective autophagy of ubiquitinated targets. Cell cycle, 2009. 8(13): p. 1986-1990.
    15. Kirkin, V., et al., A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Molecular cell, 2009. 33(4): p. 505-516.
    16. Komatsu, M., et al., Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell, 2007. 131(6): p. 1149-1163.
    17. Noda, N.N., Y. Ohsumi, and F. Inagaki, Atg8-family interacting motif crucial for selective autophagy. FEBS Lett, 2010. 584(7): p. 1379-85.
    18. Marshall, R.S., et al., ATG8-Binding UIM Proteins Define a New Class of Autophagy Adaptors and Receptors. Cell, 2019. 177(3): p. 766-781 e24.
    19. Hanaoka, H., et al., Leaf senescence and starvation-induced chlorosis are accelerated by the disruption of an Arabidopsis autophagy gene. Plant Physiol, 2002. 129(3): p. 1181-93.
    20. Slavikova, S., et al., The autophagy-associated Atg8 gene family operates both under favourable growth conditions and under starvation stresses in Arabidopsis plants. J Exp Bot, 2005. 56(421): p. 2839-49.
    21. Michaeli, S., et al., Arabidopsis ATG8-INTERACTING PROTEIN1 is involved in autophagy-dependent vesicular trafficking of plastid proteins to the vacuole. The Plant Cell, 2014. 26(10): p. 4084-4101.
    22. Svenning, S., et al., Plant NBR1 is a selective autophagy substrate and a functional hybrid of the mammalian autophagic adapters NBR1 and p62/SQSTM1. Autophagy, 2011. 7(9): p. 993-1010.
    23. Tasaki, M., S. Asatsuma, and K. Matsuoka, Monitoring protein turnover during phosphate starvation-dependent autophagic degradation using a photoconvertible fluorescent protein aggregate in tobacco BY-2 cells. Front Plant Sci, 2014. 5: p. 172.
    24. Naumann, C., et al., The Local Phosphate Deficiency Response Activates Endoplasmic Reticulum Stress-Dependent Autophagy. Plant Physiol, 2019. 179(2): p. 460-476.
    25. Hoegger, P.J., et al., Phylogenetic comparison and classification of laccase and related multicopper oxidase protein sequences. The FEBS journal, 2006. 273(10): p. 2308-2326.
    26. Svistoonoff, S., et al., Root tip contact with low-phosphate media reprograms plant root architecture. Nature genetics, 2007. 39(6): p. 792-796.
    27. Müller, J., et al., Iron-dependent callose deposition adjusts root meristem maintenance to phosphate availability. Developmental cell, 2015. 33(2): p. 216-230.
    28. Ticconi, C.A., et al., ER-resident proteins PDR2 and LPR1 mediate the developmental response of root meristems to phosphate availability. Proceedings of the National Academy of Sciences, 2009. 106(33): p. 14174-14179.
    29. Sørensen, D.M., et al., Towards defining the substrate of orphan P5A-ATPases. Biochimica et Biophysica Acta (BBA)-General Subjects, 2015. 1850(3): p. 524-535.
    30. Marschner, H., Mineral nutrition of higher plants. 2nd. Edn. Academic Pres, 1995.
    31. Holford, I., Soil phosphorus: its measurement, and its uptake by plants. Soil Research, 1997. 35(2): p. 227-240.
    32. Liu, T.Y., et al., Identification of plant vacuolar transporters mediating phosphate storage. Nat Commun, 2016. 7: p. 11095.
    33. Abel, S., C.A. Ticconi, and C.A. Delatorre, Phosphate sensing in higher plants. Physiologia plantarum, 2002. 115(1): p. 1-8.
    34. Poirier, Y. and M. Bucher, Phosphate transport and homeostasis in Arabidopsis. The Arabidopsis book/American Society of Plant Biologists, 2002. 1.
    35. Raghothama, K., Phosphate acquisition. Annual review of plant biology, 1999. 50(1): p. 665-693.
    36. Bari, R., et al., PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol, 2006. 141(3): p. 988-99.
    37. Puga, M.I., et al., SPX1 is a phosphate-dependent inhibitor of Phosphate Starvation Response 1 in Arabidopsis. Proc Natl Acad Sci U S A, 2014. 111(41): p. 14947-52.
    38. Briat, J.F., et al., Integration of P, S, Fe, and Zn nutrition signals in Arabidopsis thaliana: potential involvement of PHOSPHATE STARVATION RESPONSE 1 (PHR1). Front Plant Sci, 2015. 6: p. 290.
    39. Muchhal, U.S., J.M. Pardo, and K. Raghothama, Phosphate transporters from the higher plant Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 1996. 93(19): p. 10519-10523.
    40. Huang, T.-K., et al., Identification of downstream components of ubiquitin-conjugating enzyme PHOSPHATE2 by quantitative membrane proteomics in Arabidopsis roots. The Plant Cell, 2013. 25(10): p. 4044-4060.
    41. Liu, T.-Y., et al., PHO2-dependent degradation of PHO1 modulates phosphate homeostasis in Arabidopsis. The Plant Cell, 2012. 24(5): p. 2168-2183.
    42. Eifler, K., The PHO2 family of ubiquitin conjugating enzymes in Arabidopsis thaliana and its contribution to plant programmed cell death. 2010. PhD dissertation (Koeln, Germany: Universität zu Köln).
    43. Hauser, H.-P., et al., A giant ubiquitin-conjugating enzyme related to IAP apoptosis inhibitors. The Journal of cell biology, 1998. 141(6): p. 1415-1422.
    44. Ikeda, F., The anti-apoptotic ubiquitin conjugating enzyme BIRC6/BRUCE regulates autophagosome-lysosome fusion. Autophagy, 2018. 14(7): p. 1283-1284.
    45. Jia, R. and J.S. Bonifacino, Regulation of LC3B levels by ubiquitination and proteasomal degradation. Autophagy, 2019(just-accepted).
    46. Jiang, T.-X., et al., SIP/CacyBP promotes autophagy by regulating levels of BRUCE/Apollon, which stimulates LC3-I degradation. Proceedings of the National Academy of Sciences, 2019. 116(27): p. 13404-13413.
    47. Che, L., et al., Loss of BRUCE reduces cellular energy level and induces autophagy by driving activation of the AMPK-ULK1 autophagic initiating axis. PloS one, 2019. 14(5).
    48. Ebner, P., et al., The IAP family member BRUCE regulates autophagosome–lysosome fusion. Nature communications, 2018. 9(1): p. 1-15.
    49. Jia, R. and J.S. Bonifacino, Negative regulation of autophagy by UBA6-BIRC6–mediated ubiquitination of LC3. eLife, 2019. 8.
    50. Cabantous, S., et al., A new protein-protein interaction sensor based on tripartite split-GFP association. Scientific reports, 2013. 3: p. 2854.
    51. Liu, T.Y., et al., Detection of membrane protein-protein interaction in planta based on dual-intein-coupled tripartite split-GFP association. Plant J, 2018. 94(3): p. 426-438.
    52. Kamiyama, D., et al., Versatile protein tagging in cells with split fluorescent protein. Nature communications, 2016. 7(1): p. 1-9.
    53. Sakhonwasee, S. and S. Abel, Autophagy sustains the Arabidopsis root meristem during phosphate starvation. 2009.
    54. Jacomin, A.-C., et al., iLIR@ viral: a web resource for LIR motif-containing proteins in viruses. Autophagy, 2017. 13(10): p. 1782-1789.
    55. Xie, Q., et al., hfAIM: A reliable bioinformatics approach for in silico genome-wide identification of autophagy-associated Atg8-interacting motifs in various organisms. Autophagy, 2016. 12(5): p. 876-887.
    56. Honig, A., et al., A new type of compartment, defined by plant-specific Atg8-interacting proteins, is induced upon exposure of Arabidopsis plants to carbon starvation. Plant Cell, 2012. 24(1): p. 288-303.

    QR CODE