研究生: |
麗莎 Ayra Jagadhamma Letha |
---|---|
論文名稱: |
Investigations on High Efficiency Thin Film Silicon Solar Cells 高效率矽薄膜太陽電池之研究 |
指導教授: |
黃惠良
Hwang, Huey-Liang |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 94 |
中文關鍵詞: | 複晶矽結晶 、矽太陽電池 、非晶矽 |
外文關鍵詞: | polycrystalline silicon, silicon solar cell, MEDICI, hydrogenated amorphous silicon (a-Si:H ) |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
The focus of this work was mainly on the efficiency enhancement in hydrogenated
amorphous silicon (a-Si:H ) thin film and polycrystalline silicon (poly-Si) thin film solar cells
and to investigate and analyze a technologically useful innovative single solar cell design
by allowing the full photovoltaic (PV) potential of a-Si:H and poly-Si thin film, which can
offer the realistic possibility of achieving an efficiency of more than 15 %. Numerical
modelling and simulation helped us to understand device properties and to design a new
solar cell heterostructure combining a-Si and poly-Si for achieving the goal. Device
modelling and simulation tool MEDICITM was used to analyze and optimize the new device
heterojunction thin film silicon solar cell. At the outset, two-dimensional device modelling
for a-Si:H p+-n-n+ solar cell was carried out by using MEDICI™ device simulator and the
influence of absorber layer thickness, doping concentration, and dangling bond density of
states in absorber layer on PV parameters were investigated. A strong correlation
between n-type doping and dangling bond density in the absorber layer relative to the
stability of the a-Si:H solar cell was observed. An increased stabilized efficiency was
obtained when n-type dopant concentration in the absorber layer was higher than the
optimum value for higher initial efficiency. The window layer (p+ layer) of the device was
designed with a three layered structure of graded doping for higher device performance.
This window layer structure in the a-Si:H p+-n-n+ cell resulted in higher open circuit
voltage (Voc) and fill factor (FF) and hence higher efficiency () of the cell. The efficiency
of the modified a-Si:H solar cell structure was found to be 12.85 %.
The performance of poly-Si p+-n-n+ thin film solar cell with homojunction and
heterojunction emitter was also analyzed by using MEDICI™. The simulation results
showed that the PV parameters considerably depend on the grain size and passivation at
the grain boundary. The absorber layer thickness for optimum efficiency of the cell was
found to depend on the grain size and on the passivation at the grain boundary. The polyV
Si p+-n-n+ cell with a thin p+ emitter layer of a-Si showed much higher Voc than that for the
homojunction cell. The poly-Si cell with heterojunction emitter was found to be more
suitable for highly efficient thin film poly-Si solar cells. A thin layer of microcrystalline
silicon (μc-Si) at the interface of a-Si and poly-Si layers are found to be suitable for better
performance of the poly-Si thin film solar cell with the heterojunction emitter. The highest
efficiency of 12.66 % was obtained for this modified cell structure with 10 μm grain size.
With the newly designed a-Si/poly-Si heterojunction thin film solar cell structure, it
was possible to obtain higher short circuit current (Jsc) than the conventional a-Si homo
junction cell. The new cell design having a higher Voc and FF, together with higher Jsc
attained a higher efficiency of 15.42 %. When a properly designed three-layered window
layer structure was incorporated into this new heterostructure thin film single cell, the
efficiency was enhanced to 16.23 %. Further enhancement in efficiency for this solar cell
structure was achieved by introducing a thin layer of μc-Si at the interface of a-Si and
poly-Si, and an efficiency of 17.04 % was obtained.
For the validation of the simulated results, we carried out experiments for finding out
device quality Si films with appropriate doping concentrations by using high density
plasma chemical vapor deposition (HDPCVD) equipment with inductively coupled plasma
(ICP) source. An anomalous effect of decrease in the crystallinity of ICPCVD deposited-Si
films with increasing hydrogen (H) dilution ratio was observed. Device quality p-doped
and n-doped a-Si and poly-Si films were obtained by ICPCVD.
References
[1]. A. E. Becquerel, Comt. Rend. Acad. Sci. 9 (1839) 561.
[2]. A. Goetzberger, J. Knobloch, B. Voss, Crystalline Silicon Solar Cells, Wiley, New
York, 1998.
[3]. M. A. Green, Silicon Solar Cells: Advanced Principles and Practice, Bridge Printery,
Sidney, 1995.
[4]. D. M. Chapin, C. S. Fuller, G. L. Pearson, J. Appl. Phys. 25 (1954) 676.
[5]. P. D. Maycock, PV News 24 (3) (2005).
[6]. A. Goetzberger, C. Hebling, Solar Energy Mater. Solar Cells 62 (2000) 1.
[7]. K. Zweibel, The terawatt challenge for thin film PV, 49p. NREL Report No. TP-
520- 38350.
[8]. J. Zhao, A. Wang, M. A. Green, F. Ferrazza, Appl. Phys. Lett. 73 (1998) 1991.
[9]. M. Tanaka, S. Okamoto, S. Tsuge, S. Kiyama, Proc.3rd World Conference on PV
Energy Conversion, Osaka, Japan, 2003.
[10]. H. Sakata, T. Nakai, T. Baba, M. Taguchi, S. Tsuge, K. Uchihashi, S. Kiyama, In:
Conference Proceedings of the 28th IEEE PV Specialists Conference.
Anchorage, Alaska, (2000) pp.7-12.
[11]. H. F. Sterling, R. C. G. Swann, Solid-State Electron. 8 (1965) 653.
[12]. R. C. Chittick, J. H. Alexander, J. Electrochem. Soc. 116 (1969) 77.
[13]. W. E. Spear, P. G. LeComber, Solid State Commun. 17 (1975) 1193
[14]. D. E. Carlson, C. R. Wronsky, Appl. Phys. Lett. 28 (1976) 671.
[15]. A. Catalano, R. D’Aiello, J. Dresner, B. Faughnan, A. Firester., J. Kane, H.
Schade, Z. E. Smith, G. Swartz, A. Triano, Conference Proceedings of the 16th
IEEE PV Specialists Conference, San Diego, (1982), pp.1421-1422.
[16]. D. L. Staebler, C. R. Wronsky, Appl. Phys. Lett. 31 (1977) 292.
[17]. A. Matsuda, J. Non-Cryst. Solids 59/60 (1983) 767.
87
[18]. Y. Hattori, D. Kruangam, Tech. Dig. PVSEC-3 (1987) 171.
[19]. M. Faraji, S. Gokhale, S. V. Ghaisas, Appl. Phys. Lett. 60 (1992) 3289.
[20]. J. Meier, R. Fluckiger, H. Keppner, A. Shah, Appl. Phys. Lett. 65 (1994) 860.
[21]. A. Gordijn, J. K. Rath, R. E. I. Schropp, Prog. PVs 14 (2006) 305.
[22]. J. Meier, S. Dubail, A. Shah, Sol. Energy. Mater. Sol. Cells 74 (2002) 457.
[23]. K. Yamamoto, Proc.3rd World Conference on PV Energy Conversion, Osaka, Japan,
2003.
[24]. B. Yan, G. Yue, J. M. Owens, J. Yang, S. Guha, Proc. 4th World Conference on
PV Energy Conversion (2006).
[25]. K. Yamamoto, A. Nakajima, M. Yoshimi, T. Sawada, S. Fukuda, T. Suezaki, M.
Ichikawa, Y. koi, M. Goto, T. Meguro, T. Matsuda, M. Kondo, T. Sasaki, Y.
Tawada, Tech. Dig. 15 th International PV Science and Engineering Conference. 34-1
(2005) 529.
[26]. H. Stiebig, W. Reez, C. Haase, T. Repmann, B. Rech, Tech. Dig. 15th International
PV Science and Engineering Conference. (PVSE-15) (2005) 561.
[27]. T. Minemoto, M. Toda, S. Nagae, M. Gotoh, A. Nakajima, K. Yamamoto, H.
Takakura, Y. Hamakawa, Sol. Energy. Mater. Sol. Cells 91 (2007) 120.
[28]. P. Basore, In: Proceedings of the 21st European PV Solar Energy
Conference 2006, p.544.
[29]. M. A. Lieberman, A. J. Lichtenberg, Principles of Plasma Discharge and Materials
Processing, Second Edition, Wiley-Interscience, New York, (2005).
[30]. P. V. Santos, N. M. Johnson, R. A. Street, Phys. Rev. Lett. 67 (1991) 2686.
[31]. M. Stutzmann, D. K. Biegelsen, R. A. Street, Phys. Rev. B 35 (1987) 5666.
[32]. D. L. Staebler, C. R. Wronski, Appl. Phys. Lett. 31 (1977) 292.
[33]. T. Su, P. C.Taylor, G.Ganguly, D.E.Carlson, Phys. Rev. Lett. 89 (2002) 015502.
[34]. R. Biswas, B. C Pan, Sol. Energy Mater. Sol. Cells 78 (2003) 447.
[35]. V. Nadazdy, M. Zeman, Phys. Rev. B 69 (2004) 165213.
88
[36]. B. Schroeder, Thin Sol. Films 430 (2003) 1.
[37]. M. Ito, S. Shimizu, M. Kondo, A. Matsuda, J. Non-Cryst. Solids 338-340 (2004)
698.
[38]. C. Longeaud, J. P. Kleider, P. Roca i Cabarrocas, S. Hamma, R. Meaudre, M.
Meaudre, J. Non-Cryst. Solids 227-230 (1998) 96.
[39]. R. Martins, H. Aguas, I. Ferreira, E. Fortunato, L. Guimaraes, Sol. Energy 69
(2000) 257.
[40]. H. Miyhara, M. Takai, T. Nishimoto, M. Kondo, A. Matsuda, Sol. Energy Mater.
Sol. Cells 74 (2002) 351.
[41]. J. Meier, U. Kroll, E. Vallat-Sauvain, J. Spitznagel, U. Graf, A. Shah A, Sol.
Energy 77 (2004) 983.
[42]. S. Y. Myong, K. Sriprapha, Y. Yashiki, S. Miyajima, A. Yamada, M. Konagai, Sol.
Energy Mater. Sol. Cells 92 (2008) 639.
[43]. C. R. Wronsky, R. W. Collins, Sol. Energy 77 (2004) 877.
[44]. M. Kurata, Numerical Analysis for Semiconductor Devices. D.C. Heath & Co.,
USA, 1982
[45]. S. Selberherr, Analysis and Simulation of Semiconductor Devices. Springer-
Verlag, New York, 1984.
[46]. A. Kager, J. J. Liou, Solid-State Electron. 39 (1996) 193.
[47]. Y. Yamamoto, Y. Ishikawa, Y. Uraoka, T. Fuyuki, Jpn. J. Appl. Phys. 40
(2001) 6778.
[48]. A. Irace, G. Breglio, A. Cutolo, Opt. Commun. 221 (2003) 313.
[49]. V. Palankovski, R. Quay, S. Selberherr, IEEE J. Solid-State Circuits 36
(2001)1365.
[50]. A. F. Meftah, A. M. Meftah, A. Belghachi, J. Phys: Codens. Matter. 18 (2006) 9435.
[51]. J. K. Arch, F. A. Rubinelli, J. Y. Hou, S. J. Fonash, J. Appl. Phys. 69 (1991) 7057.
[52]. A. Fantoni, M. Viera, R. Martins, Sol. Energy Mater. Sol. Cells 73 (2002) 151.
89
[53]. P. Chatterjee, J. Appl. Phys. 76 (1994) 1301.
[54]. U. Dutta, P. Chatterjee, J. Appl. Phys. 96 (2004) 2261.
[55]. A. Kolodziej, Opto-Electron Rev. 12 (2004) 21.
[56]. N. Palit, P. Chatterjee, Sol. Energy Mater. Sol. Cells 53 (1998) 235.
[57]. Y. Poissant, P. Chatterjee, P. Roca i Cabarrocas, J. Appl. Phys. 94 (2003) 7305.
[58]. R. E. I. Schropp, M. Zeman, Amorphous and Microcrystalline Silicon Solar Cells:
Modeling, Materials and Device Technology, Kluwer Academic Publishers,
Netherlands, 1998.
[59]. R. A. Street, Hydrogenated Amorphous Silicon. Cambridge University Press, UK,
1991.
[60]. H. Sonobe, A. Sato, S. Shimizu, T. Matsui, M. Kondo, A. Matsuda, Thin Sol. Films
502 (2006) 306.
[61]. M. Hack, M. Shur, J. Appl. Phys. 58 (1985) 997.
[62]. H. Tasaki, W. Y. Kim, M. Hallerdt, M. Konagai, K. Takahashi, J. Appl. Phys. 63
(1988) 550.
[63]. A. Asano, T. Ichimura, Y. Uchida, H. Sakai, J. Appl. Phys. 63 (1988) 2346.
[64]. M. de Seta, P. Fiorini, F. Evangelisti, A. Armigliato, Superlattices Microstruct. 5
(1989) 149.
[65]. A. Rothwarf, in: Proceedings of the 20th IEEE PV Specialists Conference, Las Vegas,
USA, 1988, p. 166.
[66]. S. Kumari, N. K. Arora, G. C. Jain, Sol. Energy Mater. 5 (1981) 383
[67]. K. M. Koliwad, T. Daud, in: Proceedings of the 14th IEEE PV Specialists
Conference, California, New York 1980, pp. 1204.
[68]. A. K. Ghosh, C. Fishman, T. Feng, J. Appl. Phys. 51 (1980) 446.
[69]. H. C. Card, E. S. Yang, IEEE Trans. Electron. Devices, 24 (1977) 397.
[70]. G. Beaucarne, J. Poortmans, M. Caymax, J. Nijs, R. Mertens, Diffusion-and-
Defect-Data-Part-B (Solid-State-Phenomena) 67-68 (1999) 577.
90
[71]. T. Baba, M. Shima, T. Matsuyama, S. Tsuge, K. Wakisaka, S. Tsuda, in:
Proceedings of 13th European PV Solar Energy Conference, Nice, France, 1995.
pp.1708.
[72]. L. Carnel, I. Gordon, D. Van Gestel et al in: Proceedings of the 4th IEEE World
Conference on PV Energy Conversion, Waikoloa, Hawaii, 2006, pp. 1449.
[73]. M. Taguchi, K. Kawamoto, S. Tsuge, T. Baba, H. Sakata, M. Morizane, K. Uchihashi,
N. Nkamura, S. Kiyama, O. Oota, Prog. Photovolt. Res. Appl. 8 (2000) 503.
[74]. T. K. A. Chou, J. Kanicki, Jpn. J. Appl. Phy. 38 (1999) 2251.
[75]. Y. Kitahara, S. Toriyama, N. Sano, Jpn. J. Appl. Phy. 42 (2003) L634.
[76]. E. Christoffel, M. Rusu, A. Zerga, S. Bourdais, S. Noel, A. Slaoui, Thin Sol. Films
403-404 (2002) 258.
[77]. B. Zebentout, Z. Benamara, T. Mohammed-Brahim, Thin Sol. Films
516 (2007) 84.
[78]. M. J. Powell, S. C. Deane, Phys. Rev. B 53 (1996) 10121.
[79]. A. Gomez, L. Beltran, J. L. Aragon, D. Romeu, Scr. Mater. 38 (1998) 795.
[80]. A. Nguyen, R. Herrmann, G. Worm, Phys. Satus Solidi B 116 (1983) 501.
[81]. A. Nguyen, G. Worm, R. Herrmann, Phys. Satus Solidi B 114 (1982) 349
[82]. J. W. Tringe, J. D. Plummer, J. Appl. Phy. 87 (2000) 7913.
[83]. G. Beaucarne, S. Bourdais, A. Slaoui, J. Poortmans, Thin Sol. Films 403-404
(2002) 229.
[84]. L. Carnel, I. Gordon, D. Van Gestel, G. Beaucarne, J. Poortmans, A. Stesmans, J.
Appl. Phy. 100 (2006) 063702.
[85]. A. Focsa, I. Gordon, G. Beaucarne, O. Tuzun, A. Slaoui, J. Poortmans, Thin Solid
Films 516 (2008) 6896.
[86]. J. C. Yang, Prog. Photovolt. Res. Appl. 6 (1998) 181.
[87]. Y. Tawada, H. Yamagishi, Sol. Energy Mater. Sol. Cells 66 (2001) 95.
[88]. G. Beaucarne, J. Poortmans, M. Caymax, J. Nijs, R. Mertens, Diffusion-and-Defect
91
Data-Part-B (Solid-State-Phenomena) 67-68 (1999) 577.
[89]. Y. Ichikawa, S. Fujikake, H. Sakai, in: Proceedings of the 21st IEEE PV Specialists
Conference, Kissimee, 1991, p. 1296.
[90]. J. Yang, A. Banerjee, S. Guha, Appl. Phys. Lett. 70 (1997) 2975.
[91]. J. Meier, S. Dubail, R. Flckiger, D. Fischer, H. Keppner, A. Shah, in: Proceedings of
the 1st World Conference on PV Energy Conversion, Hawai, 1994, p. 409.
[92]. D. Fischer, S. Dubail, J. A. Anna Selvan, N. Pellaton-Vaucher, R. Platz, C. Hof,
U. Kroll, J. Meier, P. Torres, H. Keppner, N. Wyrsch, M. Goetz, M. Shah, K. D. Ufert,
in: Proceedings of the 25th PVSEC, Washington DC, 1996, p. 1053.
[93]. J. Meier, U. Kroll, J. Spitznagel, S. Fay, C. Bucher, U. Graf, A. Shah, in:
Proceedings of the Conference: PV in Europe ‘From PV Technology to Energy
Solutions’ Rome, 2002,
[94]. H. Keppner, J. Meier, P. Torres, D. Fischer, A. Shah, Appl. Phys. A. 69 (1999)
169.
[95]. M. Hack, M. Shur, J. Appl. Phys. 58 (1985) 997
[96]. R. Crandall, R. Williams, B. E. Tompkins, J. Appl. Phys. 50 (1979) 5506.
[97]. C. Wronsky, IEEE Trans. Electron Devices, Ed-24 (1977) 351.
[98]. C. R. Wronsky, D. E. Carlson, Solid-State Commun. 23 (1977) 421.
[99]. R. Williams, J. Appl. Phys. 50 (1979) 2848.
[100]. A. H. Pawlikiewicz, S. Guha, in materials Research Society Symposium
proceedings, Pittsburg, PA, 118 (1988) 599.
[101]. R. B. Bergmann, R. Brendel, M. Wolf, P. Lolgen, J. Krinke, H. P. Strunk, J. H.
Werner, Semicond. Sci. Technol. 12 (1997) 224.
[102]. V. L. Dalal, IEEE Trans. Electron. Devices Ed-27 (1980) 662.
[103]. T. Kato, IEEE Trans. Electron. Devices 35 (1988) 23.
[104]. R. B. Inversion, R. Rief, J. Appl. Phys. 62 (1987) 1675.
[105]. T. Sameshima, M. Hara, S. Usui, Jpn. J. Appl. Phys. 28 (1989) 1789.
92
[106]. H. Schaber, D. Cutter, J. Binder, E. Obermeier, J. Appl. Phys. 54 (1993) 4633.
[107]. http://www.enigmaticconsulting.com/semiconductor_processing/CVD_Fundament
als/plasmas/plasmaTOC.html
[108]. M. A. Lieberman, A. J. Lichtenberg, Principle of Plasma Discharge and Materials
Processing, 2nd Edition, Wiley-Interscience Publishers, New York (2005).
[109]. J. Hopwood, C. R. Guarnieri, S. J. Whitehair, J. J. Cumo, J. Vac. Sci. Technol. A
11 (1993) 147.
[100]. J. H. Keller, J. C. Forster, M. S. Barnes, J. Vac. Sci. Technol. A 11 (1993) 2487.
[111]. G. Cunge, B. Crowley, D. Vender, M. M. Turner, Plasma Sources Sci. Technol.
8 (1999) 576.
[112]. http://epswww.unm.edu/xrd/xrdbasics.pdf
[113]. C. R. Brundle, C. A. Evans, S. Wilson, Encyclopaedia of Materials Characterization,
Surfaces, Interfaces, Thin Films, Butterworth-Heinemann, Boston, 1992.
[114]. J. R. Devaney, Microelectronics Failure Analysis, Desk Reference, 4th Edition,
ASM International, Ohio, pp 275, 1999.
[115]. http://mse.iastate.edu/microscopy/beaminteractions.html
[116]. G. Yue, J. D. Lorentzen, J. Lin, D. Han, Q. Wang, Appl. Phys. Lett. 75 (1999) 492.
[117]. T. Nishimoto, M. Takai, H. Miyahara, M. Kondo, A. Matsuda, J. Non-Cryst. Solids
299-302 (2002) 1116.
[118]. M. Takai, T. Nishimoto, M. Kondo, A. Matsuda, Appl. Phys. Lett. 77 (2000) 2828.
[119]. H. L. Hwang, K. C. Wang, K. C. Hsu, R. Y. Wang, T. R. Yew, J. J. Loferski, Appl.
Surf. Sci. 113-114 (1997) 741.