簡易檢索 / 詳目顯示

研究生: 麗莎
Ayra Jagadhamma Letha
論文名稱: Investigations on High Efficiency Thin Film Silicon Solar Cells
高效率矽薄膜太陽電池之研究
指導教授: 黃惠良
Hwang, Huey-Liang
口試委員:
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 94
中文關鍵詞: 複晶矽結晶矽太陽電池非晶矽
外文關鍵詞: polycrystalline silicon, silicon solar cell, MEDICI, hydrogenated amorphous silicon (a-Si:H )
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The focus of this work was mainly on the efficiency enhancement in hydrogenated
    amorphous silicon (a-Si:H ) thin film and polycrystalline silicon (poly-Si) thin film solar cells
    and to investigate and analyze a technologically useful innovative single solar cell design
    by allowing the full photovoltaic (PV) potential of a-Si:H and poly-Si thin film, which can
    offer the realistic possibility of achieving an efficiency of more than 15 %. Numerical
    modelling and simulation helped us to understand device properties and to design a new
    solar cell heterostructure combining a-Si and poly-Si for achieving the goal. Device
    modelling and simulation tool MEDICITM was used to analyze and optimize the new device
    heterojunction thin film silicon solar cell. At the outset, two-dimensional device modelling
    for a-Si:H p+-n-n+ solar cell was carried out by using MEDICI™ device simulator and the
    influence of absorber layer thickness, doping concentration, and dangling bond density of
    states in absorber layer on PV parameters were investigated. A strong correlation
    between n-type doping and dangling bond density in the absorber layer relative to the
    stability of the a-Si:H solar cell was observed. An increased stabilized efficiency was
    obtained when n-type dopant concentration in the absorber layer was higher than the
    optimum value for higher initial efficiency. The window layer (p+ layer) of the device was
    designed with a three layered structure of graded doping for higher device performance.
    This window layer structure in the a-Si:H p+-n-n+ cell resulted in higher open circuit
    voltage (Voc) and fill factor (FF) and hence higher efficiency () of the cell. The efficiency
    of the modified a-Si:H solar cell structure was found to be 12.85 %.
    The performance of poly-Si p+-n-n+ thin film solar cell with homojunction and
    heterojunction emitter was also analyzed by using MEDICI™. The simulation results
    showed that the PV parameters considerably depend on the grain size and passivation at
    the grain boundary. The absorber layer thickness for optimum efficiency of the cell was
    found to depend on the grain size and on the passivation at the grain boundary. The polyV
    Si p+-n-n+ cell with a thin p+ emitter layer of a-Si showed much higher Voc than that for the
    homojunction cell. The poly-Si cell with heterojunction emitter was found to be more
    suitable for highly efficient thin film poly-Si solar cells. A thin layer of microcrystalline
    silicon (μc-Si) at the interface of a-Si and poly-Si layers are found to be suitable for better
    performance of the poly-Si thin film solar cell with the heterojunction emitter. The highest
    efficiency of 12.66 % was obtained for this modified cell structure with 10 μm grain size.
    With the newly designed a-Si/poly-Si heterojunction thin film solar cell structure, it
    was possible to obtain higher short circuit current (Jsc) than the conventional a-Si homo
    junction cell. The new cell design having a higher Voc and FF, together with higher Jsc
    attained a higher efficiency of 15.42 %. When a properly designed three-layered window
    layer structure was incorporated into this new heterostructure thin film single cell, the
    efficiency was enhanced to 16.23 %. Further enhancement in efficiency for this solar cell
    structure was achieved by introducing a thin layer of μc-Si at the interface of a-Si and
    poly-Si, and an efficiency of 17.04 % was obtained.
    For the validation of the simulated results, we carried out experiments for finding out
    device quality Si films with appropriate doping concentrations by using high density
    plasma chemical vapor deposition (HDPCVD) equipment with inductively coupled plasma
    (ICP) source. An anomalous effect of decrease in the crystallinity of ICPCVD deposited-Si
    films with increasing hydrogen (H) dilution ratio was observed. Device quality p-doped
    and n-doped a-Si and poly-Si films were obtained by ICPCVD.


    Contents Contents I Abstract IV Preface VII Acknowledgements IX 1.0 Introduction 1 1.1 Silicon solar cells 2 1.2 MEDICITM device simulator 6 1.3 ICP-CVD system 9 1.4 Objectives of the thesis 10 2.0 Two-dimensional modelling and simulation of hydrogenated amorphous silicon p+-n-n+ solar cell 11 2.1 Introduction 11 2.2 Simulation model 12 2.3 Results and discussion 16 2.3.1 Reference cell 16 2.3.2 Proposed cell and its optimization 17 2.3.3 Correlation between n-type doping concentration and dangling bond density in the absorber layer of p+-n-n+ cell 20 2.3.4 Influence of n-doped absorber layer thickness on cell’s performance 24 2.3.5 Design of window layer of p+-n-n+ cell with a three layered structure for better cell performance 25 2.4 Conclusion 26 3.0 Analysis of poly-Si thin film p+-n-n+ solar cell with homojunction and heterojunction emitters 28 3.1 Introduction 28 3.2 Simulation model 29 3.3 Results and discussion 31 3.3.1 The poly-Si p+-n-n+ homojunction cell 31 3.3.2 The poly-Si p+-n-n+ heterojunction cell with a-Si emitter 35 3.3.3 The poly-Si p+-n-n+ heterojunction cell with a thin μc-Si layer at the interface of a-Si and poly-Si layers 39 3.4 Conclusion 42 II 4.0 Novel high efficiency a-Si/poly-Si heterojunction single thin film solar cell 43 4.1 Introduction 43 4.2 Simulation model 43 4.3 Results and discussion 46 4.3.1 Proposed heterojunction cell 46 4.3.2 Analysis of the effect of a-Si and poly-Si absorber layer thicknesses on the proposed cell performance 48 4.3.3 Analysis of the effect of doping concentration in the a-Si and poly-Si absorber layers on the proposed cell performance 50 4.3.4 Optimized J-V characteristic of the proposed heterojunction cell 52 4.3.5 External quantum efficiency of the proposed heterojunction cell 54 4.3.6 Heterojunction cell with three layered window structure 55 4.3.7 Modification of a-Si and poly-Si interface with thin μc-Si layer for better performance of the cell 57 4.4 Conclusion 60 5.0 Experimental techniques 61 5.1 Introduction 61 5.2 ICP-CVD 62 5.3 Duratek HDPCVD System at NDL 64 5.4 Characterization tools 65 5.4.1 X-ray diffraction 65 5.4.2 Scanning electron microscopy 67 5.4.3 ;-STEP 67 5.4.4 Hall measurement 68 5.4.5 Four-point probe 68 5.5 Experimental procedures 68 6.0 Experimental results and discussion 71 6.1 Anomalous effect of hydrogen dilution on the crystallinity of Si films 71 6.2 Effect of RF power on the crystallinity of Si films 74 6.3 Effect of substrate temperature on the crystallinity of Si films 75 6.4 Effect of process pressure on the crystallinity of Si films 77 6.5 Effect of substrate biasing on the crystallinity of Si films 78 6.6 p-doped Si films 79 6.7 n-doped Si films 81 6.8 Conclusion 83 III 7.0 Conclusion and future work 84 7.1 Conclusion 84 7.2 Future work 85 References 86 List of publications 93

    References
    [1]. A. E. Becquerel, Comt. Rend. Acad. Sci. 9 (1839) 561.
    [2]. A. Goetzberger, J. Knobloch, B. Voss, Crystalline Silicon Solar Cells, Wiley, New
    York, 1998.
    [3]. M. A. Green, Silicon Solar Cells: Advanced Principles and Practice, Bridge Printery,
    Sidney, 1995.
    [4]. D. M. Chapin, C. S. Fuller, G. L. Pearson, J. Appl. Phys. 25 (1954) 676.
    [5]. P. D. Maycock, PV News 24 (3) (2005).
    [6]. A. Goetzberger, C. Hebling, Solar Energy Mater. Solar Cells 62 (2000) 1.
    [7]. K. Zweibel, The terawatt challenge for thin film PV, 49p. NREL Report No. TP-
    520- 38350.
    [8]. J. Zhao, A. Wang, M. A. Green, F. Ferrazza, Appl. Phys. Lett. 73 (1998) 1991.
    [9]. M. Tanaka, S. Okamoto, S. Tsuge, S. Kiyama, Proc.3rd World Conference on PV
    Energy Conversion, Osaka, Japan, 2003.
    [10]. H. Sakata, T. Nakai, T. Baba, M. Taguchi, S. Tsuge, K. Uchihashi, S. Kiyama, In:
    Conference Proceedings of the 28th IEEE PV Specialists Conference.
    Anchorage, Alaska, (2000) pp.7-12.
    [11]. H. F. Sterling, R. C. G. Swann, Solid-State Electron. 8 (1965) 653.
    [12]. R. C. Chittick, J. H. Alexander, J. Electrochem. Soc. 116 (1969) 77.
    [13]. W. E. Spear, P. G. LeComber, Solid State Commun. 17 (1975) 1193
    [14]. D. E. Carlson, C. R. Wronsky, Appl. Phys. Lett. 28 (1976) 671.
    [15]. A. Catalano, R. D’Aiello, J. Dresner, B. Faughnan, A. Firester., J. Kane, H.
    Schade, Z. E. Smith, G. Swartz, A. Triano, Conference Proceedings of the 16th
    IEEE PV Specialists Conference, San Diego, (1982), pp.1421-1422.
    [16]. D. L. Staebler, C. R. Wronsky, Appl. Phys. Lett. 31 (1977) 292.
    [17]. A. Matsuda, J. Non-Cryst. Solids 59/60 (1983) 767.
    87
    [18]. Y. Hattori, D. Kruangam, Tech. Dig. PVSEC-3 (1987) 171.
    [19]. M. Faraji, S. Gokhale, S. V. Ghaisas, Appl. Phys. Lett. 60 (1992) 3289.
    [20]. J. Meier, R. Fluckiger, H. Keppner, A. Shah, Appl. Phys. Lett. 65 (1994) 860.
    [21]. A. Gordijn, J. K. Rath, R. E. I. Schropp, Prog. PVs 14 (2006) 305.
    [22]. J. Meier, S. Dubail, A. Shah, Sol. Energy. Mater. Sol. Cells 74 (2002) 457.
    [23]. K. Yamamoto, Proc.3rd World Conference on PV Energy Conversion, Osaka, Japan,
    2003.
    [24]. B. Yan, G. Yue, J. M. Owens, J. Yang, S. Guha, Proc. 4th World Conference on
    PV Energy Conversion (2006).
    [25]. K. Yamamoto, A. Nakajima, M. Yoshimi, T. Sawada, S. Fukuda, T. Suezaki, M.
    Ichikawa, Y. koi, M. Goto, T. Meguro, T. Matsuda, M. Kondo, T. Sasaki, Y.
    Tawada, Tech. Dig. 15 th International PV Science and Engineering Conference. 34-1
    (2005) 529.
    [26]. H. Stiebig, W. Reez, C. Haase, T. Repmann, B. Rech, Tech. Dig. 15th International
    PV Science and Engineering Conference. (PVSE-15) (2005) 561.
    [27]. T. Minemoto, M. Toda, S. Nagae, M. Gotoh, A. Nakajima, K. Yamamoto, H.
    Takakura, Y. Hamakawa, Sol. Energy. Mater. Sol. Cells 91 (2007) 120.
    [28]. P. Basore, In: Proceedings of the 21st European PV Solar Energy
    Conference 2006, p.544.
    [29]. M. A. Lieberman, A. J. Lichtenberg, Principles of Plasma Discharge and Materials
    Processing, Second Edition, Wiley-Interscience, New York, (2005).
    [30]. P. V. Santos, N. M. Johnson, R. A. Street, Phys. Rev. Lett. 67 (1991) 2686.
    [31]. M. Stutzmann, D. K. Biegelsen, R. A. Street, Phys. Rev. B 35 (1987) 5666.
    [32]. D. L. Staebler, C. R. Wronski, Appl. Phys. Lett. 31 (1977) 292.
    [33]. T. Su, P. C.Taylor, G.Ganguly, D.E.Carlson, Phys. Rev. Lett. 89 (2002) 015502.
    [34]. R. Biswas, B. C Pan, Sol. Energy Mater. Sol. Cells 78 (2003) 447.
    [35]. V. Nadazdy, M. Zeman, Phys. Rev. B 69 (2004) 165213.
    88
    [36]. B. Schroeder, Thin Sol. Films 430 (2003) 1.
    [37]. M. Ito, S. Shimizu, M. Kondo, A. Matsuda, J. Non-Cryst. Solids 338-340 (2004)
    698.
    [38]. C. Longeaud, J. P. Kleider, P. Roca i Cabarrocas, S. Hamma, R. Meaudre, M.
    Meaudre, J. Non-Cryst. Solids 227-230 (1998) 96.
    [39]. R. Martins, H. Aguas, I. Ferreira, E. Fortunato, L. Guimaraes, Sol. Energy 69
    (2000) 257.
    [40]. H. Miyhara, M. Takai, T. Nishimoto, M. Kondo, A. Matsuda, Sol. Energy Mater.
    Sol. Cells 74 (2002) 351.
    [41]. J. Meier, U. Kroll, E. Vallat-Sauvain, J. Spitznagel, U. Graf, A. Shah A, Sol.
    Energy 77 (2004) 983.
    [42]. S. Y. Myong, K. Sriprapha, Y. Yashiki, S. Miyajima, A. Yamada, M. Konagai, Sol.
    Energy Mater. Sol. Cells 92 (2008) 639.
    [43]. C. R. Wronsky, R. W. Collins, Sol. Energy 77 (2004) 877.
    [44]. M. Kurata, Numerical Analysis for Semiconductor Devices. D.C. Heath & Co.,
    USA, 1982
    [45]. S. Selberherr, Analysis and Simulation of Semiconductor Devices. Springer-
    Verlag, New York, 1984.
    [46]. A. Kager, J. J. Liou, Solid-State Electron. 39 (1996) 193.
    [47]. Y. Yamamoto, Y. Ishikawa, Y. Uraoka, T. Fuyuki, Jpn. J. Appl. Phys. 40
    (2001) 6778.
    [48]. A. Irace, G. Breglio, A. Cutolo, Opt. Commun. 221 (2003) 313.
    [49]. V. Palankovski, R. Quay, S. Selberherr, IEEE J. Solid-State Circuits 36
    (2001)1365.
    [50]. A. F. Meftah, A. M. Meftah, A. Belghachi, J. Phys: Codens. Matter. 18 (2006) 9435.
    [51]. J. K. Arch, F. A. Rubinelli, J. Y. Hou, S. J. Fonash, J. Appl. Phys. 69 (1991) 7057.
    [52]. A. Fantoni, M. Viera, R. Martins, Sol. Energy Mater. Sol. Cells 73 (2002) 151.
    89
    [53]. P. Chatterjee, J. Appl. Phys. 76 (1994) 1301.
    [54]. U. Dutta, P. Chatterjee, J. Appl. Phys. 96 (2004) 2261.
    [55]. A. Kolodziej, Opto-Electron Rev. 12 (2004) 21.
    [56]. N. Palit, P. Chatterjee, Sol. Energy Mater. Sol. Cells 53 (1998) 235.
    [57]. Y. Poissant, P. Chatterjee, P. Roca i Cabarrocas, J. Appl. Phys. 94 (2003) 7305.
    [58]. R. E. I. Schropp, M. Zeman, Amorphous and Microcrystalline Silicon Solar Cells:
    Modeling, Materials and Device Technology, Kluwer Academic Publishers,
    Netherlands, 1998.
    [59]. R. A. Street, Hydrogenated Amorphous Silicon. Cambridge University Press, UK,
    1991.
    [60]. H. Sonobe, A. Sato, S. Shimizu, T. Matsui, M. Kondo, A. Matsuda, Thin Sol. Films
    502 (2006) 306.
    [61]. M. Hack, M. Shur, J. Appl. Phys. 58 (1985) 997.
    [62]. H. Tasaki, W. Y. Kim, M. Hallerdt, M. Konagai, K. Takahashi, J. Appl. Phys. 63
    (1988) 550.
    [63]. A. Asano, T. Ichimura, Y. Uchida, H. Sakai, J. Appl. Phys. 63 (1988) 2346.
    [64]. M. de Seta, P. Fiorini, F. Evangelisti, A. Armigliato, Superlattices Microstruct. 5
    (1989) 149.
    [65]. A. Rothwarf, in: Proceedings of the 20th IEEE PV Specialists Conference, Las Vegas,
    USA, 1988, p. 166.
    [66]. S. Kumari, N. K. Arora, G. C. Jain, Sol. Energy Mater. 5 (1981) 383
    [67]. K. M. Koliwad, T. Daud, in: Proceedings of the 14th IEEE PV Specialists
    Conference, California, New York 1980, pp. 1204.
    [68]. A. K. Ghosh, C. Fishman, T. Feng, J. Appl. Phys. 51 (1980) 446.
    [69]. H. C. Card, E. S. Yang, IEEE Trans. Electron. Devices, 24 (1977) 397.
    [70]. G. Beaucarne, J. Poortmans, M. Caymax, J. Nijs, R. Mertens, Diffusion-and-
    Defect-Data-Part-B (Solid-State-Phenomena) 67-68 (1999) 577.
    90
    [71]. T. Baba, M. Shima, T. Matsuyama, S. Tsuge, K. Wakisaka, S. Tsuda, in:
    Proceedings of 13th European PV Solar Energy Conference, Nice, France, 1995.
    pp.1708.
    [72]. L. Carnel, I. Gordon, D. Van Gestel et al in: Proceedings of the 4th IEEE World
    Conference on PV Energy Conversion, Waikoloa, Hawaii, 2006, pp. 1449.
    [73]. M. Taguchi, K. Kawamoto, S. Tsuge, T. Baba, H. Sakata, M. Morizane, K. Uchihashi,
    N. Nkamura, S. Kiyama, O. Oota, Prog. Photovolt. Res. Appl. 8 (2000) 503.
    [74]. T. K. A. Chou, J. Kanicki, Jpn. J. Appl. Phy. 38 (1999) 2251.
    [75]. Y. Kitahara, S. Toriyama, N. Sano, Jpn. J. Appl. Phy. 42 (2003) L634.
    [76]. E. Christoffel, M. Rusu, A. Zerga, S. Bourdais, S. Noel, A. Slaoui, Thin Sol. Films
    403-404 (2002) 258.
    [77]. B. Zebentout, Z. Benamara, T. Mohammed-Brahim, Thin Sol. Films
    516 (2007) 84.
    [78]. M. J. Powell, S. C. Deane, Phys. Rev. B 53 (1996) 10121.
    [79]. A. Gomez, L. Beltran, J. L. Aragon, D. Romeu, Scr. Mater. 38 (1998) 795.
    [80]. A. Nguyen, R. Herrmann, G. Worm, Phys. Satus Solidi B 116 (1983) 501.
    [81]. A. Nguyen, G. Worm, R. Herrmann, Phys. Satus Solidi B 114 (1982) 349
    [82]. J. W. Tringe, J. D. Plummer, J. Appl. Phy. 87 (2000) 7913.
    [83]. G. Beaucarne, S. Bourdais, A. Slaoui, J. Poortmans, Thin Sol. Films 403-404
    (2002) 229.
    [84]. L. Carnel, I. Gordon, D. Van Gestel, G. Beaucarne, J. Poortmans, A. Stesmans, J.
    Appl. Phy. 100 (2006) 063702.
    [85]. A. Focsa, I. Gordon, G. Beaucarne, O. Tuzun, A. Slaoui, J. Poortmans, Thin Solid
    Films 516 (2008) 6896.
    [86]. J. C. Yang, Prog. Photovolt. Res. Appl. 6 (1998) 181.
    [87]. Y. Tawada, H. Yamagishi, Sol. Energy Mater. Sol. Cells 66 (2001) 95.
    [88]. G. Beaucarne, J. Poortmans, M. Caymax, J. Nijs, R. Mertens, Diffusion-and-Defect
    91
    Data-Part-B (Solid-State-Phenomena) 67-68 (1999) 577.
    [89]. Y. Ichikawa, S. Fujikake, H. Sakai, in: Proceedings of the 21st IEEE PV Specialists
    Conference, Kissimee, 1991, p. 1296.
    [90]. J. Yang, A. Banerjee, S. Guha, Appl. Phys. Lett. 70 (1997) 2975.
    [91]. J. Meier, S. Dubail, R. Flckiger, D. Fischer, H. Keppner, A. Shah, in: Proceedings of
    the 1st World Conference on PV Energy Conversion, Hawai, 1994, p. 409.
    [92]. D. Fischer, S. Dubail, J. A. Anna Selvan, N. Pellaton-Vaucher, R. Platz, C. Hof,
    U. Kroll, J. Meier, P. Torres, H. Keppner, N. Wyrsch, M. Goetz, M. Shah, K. D. Ufert,
    in: Proceedings of the 25th PVSEC, Washington DC, 1996, p. 1053.
    [93]. J. Meier, U. Kroll, J. Spitznagel, S. Fay, C. Bucher, U. Graf, A. Shah, in:
    Proceedings of the Conference: PV in Europe ‘From PV Technology to Energy
    Solutions’ Rome, 2002,
    [94]. H. Keppner, J. Meier, P. Torres, D. Fischer, A. Shah, Appl. Phys. A. 69 (1999)
    169.
    [95]. M. Hack, M. Shur, J. Appl. Phys. 58 (1985) 997
    [96]. R. Crandall, R. Williams, B. E. Tompkins, J. Appl. Phys. 50 (1979) 5506.
    [97]. C. Wronsky, IEEE Trans. Electron Devices, Ed-24 (1977) 351.
    [98]. C. R. Wronsky, D. E. Carlson, Solid-State Commun. 23 (1977) 421.
    [99]. R. Williams, J. Appl. Phys. 50 (1979) 2848.
    [100]. A. H. Pawlikiewicz, S. Guha, in materials Research Society Symposium
    proceedings, Pittsburg, PA, 118 (1988) 599.
    [101]. R. B. Bergmann, R. Brendel, M. Wolf, P. Lolgen, J. Krinke, H. P. Strunk, J. H.
    Werner, Semicond. Sci. Technol. 12 (1997) 224.
    [102]. V. L. Dalal, IEEE Trans. Electron. Devices Ed-27 (1980) 662.
    [103]. T. Kato, IEEE Trans. Electron. Devices 35 (1988) 23.
    [104]. R. B. Inversion, R. Rief, J. Appl. Phys. 62 (1987) 1675.
    [105]. T. Sameshima, M. Hara, S. Usui, Jpn. J. Appl. Phys. 28 (1989) 1789.
    92
    [106]. H. Schaber, D. Cutter, J. Binder, E. Obermeier, J. Appl. Phys. 54 (1993) 4633.
    [107]. http://www.enigmaticconsulting.com/semiconductor_processing/CVD_Fundament
    als/plasmas/plasmaTOC.html
    [108]. M. A. Lieberman, A. J. Lichtenberg, Principle of Plasma Discharge and Materials
    Processing, 2nd Edition, Wiley-Interscience Publishers, New York (2005).
    [109]. J. Hopwood, C. R. Guarnieri, S. J. Whitehair, J. J. Cumo, J. Vac. Sci. Technol. A
    11 (1993) 147.
    [100]. J. H. Keller, J. C. Forster, M. S. Barnes, J. Vac. Sci. Technol. A 11 (1993) 2487.
    [111]. G. Cunge, B. Crowley, D. Vender, M. M. Turner, Plasma Sources Sci. Technol.
    8 (1999) 576.
    [112]. http://epswww.unm.edu/xrd/xrdbasics.pdf
    [113]. C. R. Brundle, C. A. Evans, S. Wilson, Encyclopaedia of Materials Characterization,
    Surfaces, Interfaces, Thin Films, Butterworth-Heinemann, Boston, 1992.
    [114]. J. R. Devaney, Microelectronics Failure Analysis, Desk Reference, 4th Edition,
    ASM International, Ohio, pp 275, 1999.
    [115]. http://mse.iastate.edu/microscopy/beaminteractions.html
    [116]. G. Yue, J. D. Lorentzen, J. Lin, D. Han, Q. Wang, Appl. Phys. Lett. 75 (1999) 492.
    [117]. T. Nishimoto, M. Takai, H. Miyahara, M. Kondo, A. Matsuda, J. Non-Cryst. Solids
    299-302 (2002) 1116.
    [118]. M. Takai, T. Nishimoto, M. Kondo, A. Matsuda, Appl. Phys. Lett. 77 (2000) 2828.
    [119]. H. L. Hwang, K. C. Wang, K. C. Hsu, R. Y. Wang, T. R. Yew, J. J. Loferski, Appl.
    Surf. Sci. 113-114 (1997) 741.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE