研究生: |
江冠儫 Jiang, Guan Hao |
---|---|
論文名稱: |
石墨烯-砷化鎵/鋁砷化鎵混成元件磁聲子共振及熱電阻量測研究石墨烯迴旋輻射現象之研究 Exploration of graphene cyclotron emission in Graphene-GaAs/AlGaAs hybrid device via magnetophonon resonance and bolometric measurement |
指導教授: |
陳正中
Chen, Jeng Chung |
口試委員: |
林大欽
Lin, Dah Chin 齊正中 Chi, Jeng Chung |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 87 |
中文關鍵詞: | 石墨烯 、砷化鎵/鋁砷化鎵 、迴旋輻射 |
外文關鍵詞: | Graphene, GaAs/AlGaAs, Cyclotron Emission |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文我們在石墨烯-砷化鎵/鋁砷化鎵異質結構混成元件研究石墨烯迴旋輻射,目前石墨烯迴旋輻射是個在實驗中尚未被成功觀測到的題目,我們採用化學氣相沉積法製備的石墨烯覆蓋在砷化鎵/鋁砷化鎵異質結構表面,而二維電子氣則位於表面下105 nm。我們藉由外加1 T垂直於元件的磁場,使石墨烯藍道能階n = 0 與 n = 1 能量差Egr =37meV,當以大於Egr /2e的電壓通過石墨烯時,非平衡載子產生,而迴旋輻射現象在汲極與源極的熱點(hot-spot)區甚至是通道區間發生。石墨烯的迴旋輻射探測上,我們調變石墨烯藍道能級對應到砷化鎵光聲子(LO、TO )能量下,藉由吸收迴旋輻射,位於砷化鎵層的二維電子氣環境溫度將被提升,我們期望能藉由這種電阻熱效應來探測到石墨烯迴旋輻射。
實驗中我們藉由免液氦系統冷卻樣品,並調變量測溫度由1.4 K到110K且最大外加磁場達到8 T,石墨烯與二維電子氣的歐姆接觸在元件上不相接觸,溫度80 K的二維電子氣磁聲子共振訊號明確指出LO聲子在二維電子氣磁阻量測中的影響。我們採用兩種元件幾何圖形設計也利用兩種探測機制來探測迴旋輻射訊號,而在我們的量測條件下,訊號大小進入了雜訊範圍,所以我們並沒有清楚量測到石墨烯迴旋輻射現象。
我們認為在本實驗的想定中無法測得該訊號的原因是石墨烯迴旋輻射強度遠比期望的小,或者是磁阻變化的量測上探測感度不足。在未來的工作上我們建議提升石墨烯的品質或者採用感度更好的探測機制或元件。
We investigate cyclotron emission (CE) of graphene by a graphene/GaAs-AlGaAs heterostructure hybrid device. To date, this challenging subject - CE of graphene- has not been successfully observed. We employ chemical vapor deposited graphene on top of GaAs-AlGaAs heterostructure with two dimensional electron gas (2DEG) 105 nm beneath the surface. To generate CE, we apply perpendicular magnetic field to the device up to 1 T, giving rise Landau level energy spacing E gr between n = 0 to n = 1 of graphene about 37 meV. While the applied source-drain bias on graphene larger than E gr/2e, nonequilibrium carriers would be generated, and CE occurs at the hot-spot corners or even within the bulk regime. To detect CE, we consider Egr actually is matched to the phonon energy (LO and TO phonons) of GaAs crystal. By absorbing CE, 2DEG in GaAs layer will be heated up and we expect this kind bolometric effect can be measured by the change of the longitudinal resistance of 2DEG.
The device is cooled down in a cryostat with varying temperature from 1.4 K to 110 K and magnetic field up to 8 T. Electrical contacts were made separately to contact Graphene and 2DEG. Clear magnetophonon resonances of 2DEG are observed at 80 K, supporting the role of LO phonon in magnetoresistance. We adopt two different device designs and use two different modulation ways to catch CE signals. We do not find a clear signal of CE in graphene, although the noise level seemly becomes larger in the target conditions.
The absence of CE may suggest that radiation signal is much weaker than one expected or the magnetoresistance of 2DEG is not sensitive enough for the present experiment. For future works, we suggest to improve the quality of graphene and to adopt more sensitive detective mechanism.
[1] E.Gornik, ”Far infrared cyclotron emission in semiconductors”, Journal Magnetism of Magnetic Materials, 11, 39 (1979).
[2] W. Monch, ”semiconductor surface and interface ”, Springer-Verlag Berlin and Heidelberg GmbH & Co. KG publishers (2001).
[3] B.Jackelmann, B.Jeanneret, ”The quantum Hall effect as an electrical resistance standard” , Report on Progress in Physics., 64, 1603 (2001).
[4] Y. Kawano and Y. Hisanaga, ’’Cyclotron emission from quantized Hall devices: Injection of nonequilibrium electrons from contacts”, Physical Review B, 59, 19 (1999).
[5] Y. Kawano and S. Komiyama, ’’Spatial distribution of nonequilibrium electrons in quantum Hall devices:Imaging via cyclotron emission’’, Physical Review B, 68, 085328 (2003).
[6] Kenji Ikushima et al., ’’THz imaging of cyclotron emission in quantum Hall conductors’’, Physica E, 34, 22 (2006) .
[7] Kenji Ikushima et al., ’’ Photon-counting microscopy of terahertz radiation’’, Applied Physics Letters, 88, 152110 (2006).
[8] P.Avouris, ’’Graphene: Electronic and Photonic Properties and Devices ’’, Nano Letter , 10, 4285 (2010).
[9] Helin Cao et al., ’’Electronic transport in chemical vapor deposited graphene synthesized on Cu: Quantum Hall effect and weak localization”. Applied Physics Letters, 96, 122106 (2010).
[10] Takahiro Morimoto, Yasuhiro Hatsugai, Hideo Aoki, ’’ Cyclotron radiation and emission in graphene’’, Physical Review B, 78, 073406 (2008)
[11] M. A. Brummell, R. J. Nicholas, and M. A. Hopkins,’’ Modification of the Electron-Phonon Interactions in GaAs-GaAlAs Heterojunctions’’, Physical Review Letters, 58, 1 (1987)
[12] A. Rogalski, ’’ Imfrared Detectors’’, Gordon and Breach Science Publishers (2000).
[13] Junsaku Nitta et al., ’’ Gate Control of Spin-Orbit Interaction in an Inverted
In0.53Ga0.47As/In0.52Al0.48As Heterostructure’’, Physical Review Letters, 78, 7 (1997)
[14] J. L. T. Waugh and G. Dolling “ Crystal dynamics of Gallium Arsenide”, Physical Review Letters, 132, 6 (1963)
[15] Y. Zhang, Y.-W. Tan, H.L. Stormer, P. Kim, ’’Experimental observation of the quantum Hall effect and Berry’s phase in graphene’’, Nature, 438, 201 (2005).
[16] J.E.Zucker et al., ’’ Optical Vibrational Modes and Electron-Phonon Interaction in GaAs Quantum Wells’’, Physical Review Letter, 53, 13 (1984)
[17] Chiu-Chun Tang et al., ’’ Graphene-GaAs/AlxGa1-xAs heterostructure dual-function field-effect transistor’’, Applied Physics Letters, 101, 202104 (2012)