簡易檢索 / 詳目顯示

研究生: 江冠儫
Jiang, Guan Hao
論文名稱: 石墨烯-砷化鎵/鋁砷化鎵混成元件磁聲子共振及熱電阻量測研究石墨烯迴旋輻射現象之研究
Exploration of graphene cyclotron emission in Graphene-GaAs/AlGaAs hybrid device via magnetophonon resonance and bolometric measurement
指導教授: 陳正中
Chen, Jeng Chung
口試委員: 林大欽
Lin, Dah Chin
齊正中
Chi, Jeng Chung
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 87
中文關鍵詞: 石墨烯砷化鎵/鋁砷化鎵迴旋輻射
外文關鍵詞: Graphene, GaAs/AlGaAs, Cyclotron Emission
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文我們在石墨烯-砷化鎵/鋁砷化鎵異質結構混成元件研究石墨烯迴旋輻射,目前石墨烯迴旋輻射是個在實驗中尚未被成功觀測到的題目,我們採用化學氣相沉積法製備的石墨烯覆蓋在砷化鎵/鋁砷化鎵異質結構表面,而二維電子氣則位於表面下105 nm。我們藉由外加1 T垂直於元件的磁場,使石墨烯藍道能階n = 0 與 n = 1 能量差Egr =37meV,當以大於Egr /2e的電壓通過石墨烯時,非平衡載子產生,而迴旋輻射現象在汲極與源極的熱點(hot-spot)區甚至是通道區間發生。石墨烯的迴旋輻射探測上,我們調變石墨烯藍道能級對應到砷化鎵光聲子(LO、TO )能量下,藉由吸收迴旋輻射,位於砷化鎵層的二維電子氣環境溫度將被提升,我們期望能藉由這種電阻熱效應來探測到石墨烯迴旋輻射。
      
      實驗中我們藉由免液氦系統冷卻樣品,並調變量測溫度由1.4 K到110K且最大外加磁場達到8 T,石墨烯與二維電子氣的歐姆接觸在元件上不相接觸,溫度80 K的二維電子氣磁聲子共振訊號明確指出LO聲子在二維電子氣磁阻量測中的影響。我們採用兩種元件幾何圖形設計也利用兩種探測機制來探測迴旋輻射訊號,而在我們的量測條件下,訊號大小進入了雜訊範圍,所以我們並沒有清楚量測到石墨烯迴旋輻射現象。

      我們認為在本實驗的想定中無法測得該訊號的原因是石墨烯迴旋輻射強度遠比期望的小,或者是磁阻變化的量測上探測感度不足。在未來的工作上我們建議提升石墨烯的品質或者採用感度更好的探測機制或元件。


    We investigate cyclotron emission (CE) of graphene by a graphene/GaAs-AlGaAs heterostructure hybrid device. To date, this challenging subject - CE of graphene- has not been successfully observed. We employ chemical vapor deposited graphene on top of GaAs-AlGaAs heterostructure with two dimensional electron gas (2DEG) 105 nm beneath the surface. To generate CE, we apply perpendicular magnetic field to the device up to 1 T, giving rise Landau level energy spacing E gr between n = 0 to n = 1 of graphene about 37 meV. While the applied source-drain bias on graphene larger than E gr/2e, nonequilibrium carriers would be generated, and CE occurs at the hot-spot corners or even within the bulk regime. To detect CE, we consider Egr actually is matched to the phonon energy (LO and TO phonons) of GaAs crystal. By absorbing CE, 2DEG in GaAs layer will be heated up and we expect this kind bolometric effect can be measured by the change of the longitudinal resistance of 2DEG.
    The device is cooled down in a cryostat with varying temperature from 1.4 K to 110 K and magnetic field up to 8 T. Electrical contacts were made separately to contact Graphene and 2DEG. Clear magnetophonon resonances of 2DEG are observed at 80 K, supporting the role of LO phonon in magnetoresistance. We adopt two different device designs and use two different modulation ways to catch CE signals. We do not find a clear signal of CE in graphene, although the noise level seemly becomes larger in the target conditions.
    The absence of CE may suggest that radiation signal is much weaker than one expected or the magnetoresistance of 2DEG is not sensitive enough for the present experiment. For future works, we suggest to improve the quality of graphene and to adopt more sensitive detective mechanism.

    目錄 摘要 1 Abstract 2 致謝 3 目錄 4 第一章 二維材料系統中的迴旋輻射 1.1 迴旋輻射機制 7 1.2 迴旋輻射量測-紅外線感測器簡介 8 1.3 砷化鎵/鋁砷化鎵異質結構中的二維電子氣與其迴旋輻射 9 1.3.1 砷化鎵/鋁砷化鎵異質結構中的二維電子氣 9 1.3.2 藍道能級與態密度 10 1.3.3 二維電子氣磁場中的傳輸行為 13 1.3.4 二維電子氣的迴旋輻產生機制 16 1.4 二維材料石墨烯 17 1.4.1 石墨烯的晶格結構 18 1.4.2 石墨烯的能帶結構 19 1.4.3 石墨烯的藍道能級與量子傳輸行為 21 1.4.4 石墨烯的迴旋輻射預想 23 1.5 實驗動機 24 第二章 石墨烯迴旋輻射探測 2.1 石墨烯迴旋輻射探測實驗想定 26 2.2 砷化鎵色散關係與吸收光譜 27 2.3 迴旋輻射探測機制一─二維電子氣熱電阻探測機制 29 2.4 迴旋輻射探測機制二─砷化鎵/鋁砷化鎵異質結構磁聲子共振探測機制 29 2.4.1 異質結構中的聲電子交互作用─磁聲子共振原理 29 2.4.2 磁聲子共振頻率的偏移 31 3.2.3 磁聲子共振對迴旋輻射的探測機制 31 2.5 石墨烯迴旋輻射探測預想訊號 33 第三章 樣品設計、製作與基本特性 3.1 實驗樣品設計 35 3.2 元件特性與測試 37 3.2.1 實驗元件介紹 37 3.2.2 二維電子氣與石墨烯於磁場中的傳輸行為 39 3.2.2 石墨烯-砷化鎵/鋁砷化鎵異質結構混合電晶體的場效行為 44 第四章 實驗量測與結果討論 4.1實驗架設 49 4.2 實驗數據與討論 51 4.2.1 樣品A1數據與討埨 53 4.2.2 樣品A2數據與討論 56 4.2.3 樣品B6數據與討論 61 4.3 結論 65 第五章 總結與未來展望 66 參考文獻 67 附件一 交流訊號中的電容效應分析 70 附件二 SdH振盪中的節點訊號分析 73 附件三 免液氦系統 75 附件四 石墨烯-砷化鎵/鋁砷化鎵異質結構混合電晶體製作流程 76 1 清洗樣品 77 2 黃光微影 77 3 熱蒸鍍系統 78 4 二維電子氣之歐姆接觸(退火系統) 78 5 蝕刻 79 6 化學氣相沉積石墨烯之成長 80 7 石墨烯轉移 81 圖目錄 84

    [1] E.Gornik, ”Far infrared cyclotron emission in semiconductors”, Journal Magnetism of Magnetic Materials, 11, 39 (1979).

    [2] W. Monch, ”semiconductor surface and interface ”, Springer-Verlag Berlin and Heidelberg GmbH & Co. KG publishers (2001).


    [3] B.Jackelmann, B.Jeanneret, ”The quantum Hall effect as an electrical resistance standard” , Report on Progress in Physics., 64, 1603 (2001).

    [4] Y. Kawano and Y. Hisanaga, ’’Cyclotron emission from quantized Hall devices: Injection of nonequilibrium electrons from contacts”, Physical Review B, 59, 19 (1999).

    [5] Y. Kawano and S. Komiyama, ’’Spatial distribution of nonequilibrium electrons in quantum Hall devices:Imaging via cyclotron emission’’, Physical Review B, 68, 085328 (2003).

    [6] Kenji Ikushima et al., ’’THz imaging of cyclotron emission in quantum Hall conductors’’, Physica E, 34, 22 (2006) .

    [7] Kenji Ikushima et al., ’’ Photon-counting microscopy of terahertz radiation’’, Applied Physics Letters, 88, 152110 (2006).

    [8] P.Avouris, ’’Graphene: Electronic and Photonic Properties and Devices ’’, Nano Letter , 10, 4285 (2010).


    [9] Helin Cao et al., ’’Electronic transport in chemical vapor deposited graphene synthesized on Cu: Quantum Hall effect and weak localization”. Applied Physics Letters, 96, 122106 (2010).

    [10] Takahiro Morimoto, Yasuhiro Hatsugai, Hideo Aoki, ’’ Cyclotron radiation and emission in graphene’’, Physical Review B, 78, 073406 (2008)

    [11] M. A. Brummell, R. J. Nicholas, and M. A. Hopkins,’’ Modification of the Electron-Phonon Interactions in GaAs-GaAlAs Heterojunctions’’, Physical Review Letters, 58, 1 (1987)

    [12] A. Rogalski, ’’ Imfrared Detectors’’, Gordon and Breach Science Publishers (2000).

    [13] Junsaku Nitta et al., ’’ Gate Control of Spin-Orbit Interaction in an Inverted
    In0.53Ga0.47As/In0.52Al0.48As Heterostructure’’, Physical Review Letters, 78, 7 (1997)

    [14] J. L. T. Waugh and G. Dolling “ Crystal dynamics of Gallium Arsenide”, Physical Review Letters, 132, 6 (1963)

    [15] Y. Zhang, Y.-W. Tan, H.L. Stormer, P. Kim, ’’Experimental observation of the quantum Hall effect and Berry’s phase in graphene’’, Nature, 438, 201 (2005).

    [16] J.E.Zucker et al., ’’ Optical Vibrational Modes and Electron-Phonon Interaction in GaAs Quantum Wells’’, Physical Review Letter, 53, 13 (1984)

    [17] Chiu-Chun Tang et al., ’’ Graphene-GaAs/AlxGa1-xAs heterostructure dual-function field-effect transistor’’, Applied Physics Letters, 101, 202104 (2012)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE