研究生: |
陳寳升 Chen, Pao-Sheng |
---|---|
論文名稱: |
藉由鉭、氮添加於鋯-銅-鋁-銀金屬玻璃薄膜 以提升熱及機械特性 Doping of Tantalum and Nitrogen in Zr-Cu-Al-Ag Thin Film Metallic Glass for Improved Thermal and Mechanical Properties |
指導教授: |
杜正恭
Duh, Jenq-Gong |
口試委員: |
李志偉
Lee, Jyh-Wei 吳芳賓 Wu, Fan-Bean |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 132 |
中文關鍵詞: | 金屬玻璃薄膜 、濺鍍 、脈衝直流 、熱性質 、機械性質 |
外文關鍵詞: | thin film metallic glass, sputtering, Pulsed-DC, thermal berhavior, mechanical behavior |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
金屬玻璃由於具良好機械性質、高表面精度等獨特性質,在諸多前瞻領域深具應用潛力,其中硬度和熱穩定性之提升為各種應用中共通的目標。添加微量元素在金屬玻璃中為一提升機械與熱性質之有效方法。氮元素由於其高電負度與小原子半徑,預期會對金屬玻璃性質造成極為顯著影響。
本研究中,藉由氮原子添加於鋯銅鋁銀金屬中發展出一新金屬玻璃系譜。從Tg和彈性模數趨勢可看出氮原子之添加可使玻璃態自由能降低。當氮添加濃度增高時,會形成更多以氮原子為中心之團簇,更難被塑性變形。藉由氮添加,起始結晶溫度(Tx)比起一般鋯基金屬玻璃來得高出許多,顯示該非晶態擁有更低位能。先在鋯銅鋁銀中引入鉭原子,可藉由氮化鉭結晶態之競爭使氮化鋯之結晶態較不穩定,最終使氮元素在鉭鋯銅鋁銀金屬玻璃薄膜中的非晶成份區間變寬。氮添加之鉭鋯銅鋁銀金屬玻璃薄膜硬度可超過10 GPa、Tg接近800 K、過冷液態區間 (supercool liquid region) 寬達112 K,在鋯基金屬玻璃中展現優異的熱及機械性質。
Owing to the unique properties, such as excellent mechanical performance, and nano-scale surface roughness, metallic glass can be applied in various novel fields. Meanwhile, the improvement of thermal stability and hardness is the common target in these applications. Minor alloying is an effective method to enhance the thermal and mechanical properties of metallic glasses. Different from elements used to be doped into metallic glass, the role nitrogen atoms play in metallic glass is quite distinct and critically important, owing to its strong electronegativity and small atomic radius.
In this work, an alternative class of metallic glass is developed. By adding nitrogen into Zr-Cu-Al-Ag TFMG, the configuration energy of short range structure is greatly modified. From the viewpoint of thermal behavior, the evolution of Tg and elastic modulus with nitrogen could be well correlated, implying significant effect of nitrogen atoms on the potential energy landscape (PEL) of the TFMGs. Besides, more amounts of nitrogen addition lead to the increase of short range order structure in the amorphous matrix. That is, most metallic atoms are strongly attracted by nitrogen, forming the nitrogen-centered cluster, in which more energy is required to cause plastic deformation. On the other hand, a meta-stable state with lower energy is attained as indicated by the much higher Tx than normal Zr-based metallic glasses. However, the amorphicity region of nitrogen in Zr-Cu-Al-Ag metallic glass is not wide enough, restricting the enhancement amount of thermal and mechanical performances. By incorporating Ta firstly, the competing ZrN crystalline phase is destabilized, leading to the wider amorphicity region of nitrogen in Ta-Zr-Cu-Al-Ag TFMG. As a result, hardness over 10 GPa, Tg near 800 K, and supercool liquid region as wide as 112K is achieved in the nitrogen-doped Ta-Zr-Cu-Al-Ag TFMG.
References
1. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of
dielectrics”, Nat. Mater. 8 (2009) 568
2. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D.
R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies ”,
Science 314 (2006) 977
3. N. M. Litchinitser and V. M. Shalaev, “Metamaterials: transforming theory into
reality”, J. Opt. Soc. Am. B 26 (2009) B161
4. Y. Saotome, and H. Iwazaki, “Superplastic backward microextrusion of microparts
for micro-electro-mechanical systems”, J. Mater. Process. Technol. 119 (2001) 307
5. B. Redding , S. Shi, T. Creazzo, E. Marchena, and D.W. Prather, “Design and
characterization of silicon nanocrystal microgear resonator”, Phot. Nano. Fund.
Appl. 8 (2010) 177
6. Kentaro Oda, Hidekuni Takao, Kyohei Terao, Takaaki Suzuki, Fusao Shimokawa,
Ichirou Ishimaru, Fumikazu Oohira, “Vertical comb-drive MEMS mirror with
sensing function for phase-shift device”, Sens. Actuators, A 181 (2012) 61
7. H. Liu, and T.J. Webster, “Nanomedicine for implants: a review of studies and
necessary experimental tools”, Biomaterials 28 (2007) 354
8. Elisabeth Engel, Alexandra Michiardi, Melba Navarro, Damien Lacroix,
and Josep A. Planell, “Nanotechnology in regenerative medicine: the materials
side”, Trends Biotechnol. 26 (2007) 39
9. H. Becker, and C. Cartner, “Polymer microfabrication technologies for microfluidic
systems”, Anal. Bioanal. Chem. 390 (2008) 89
10. D.R. Barbero, M.S.M. Saifullah, P. Hoffmann, H.J. Mathieu, D. Anderson, G.A.C.
Jones, M.E. Welland, and U. Steiner, “High resolution nanoimprinting with a
robust and reusable polymer mold”, Adv. Funct. Mater. 17 (2007) 2419
11. H, Lorenz , M. Despont , N. Fahrni, N. LaBianca, P. Renaud and P. Vettiger,
“SU-8: a low-cost negative resist for MEMS”, J. Micromech. Microeng. 7(1997)
121
12 B. Lee, K.J. Cha, and T.H. Kwon, “Fabrication of polymer micro/nano-hybrid lens
array by microstructured anodic aluminum oxide (AAO) mold”, Microelectron.
Eng. 86 (2009) 857
13. E. Kukharenka, M.M. Farooqui, L. Grigore, M. Kraft, and N. Hollinshead,
“Electroplating moulds using dry film thick negative photoresist”, J. Micromech.
Microeng. 13 (2003) S67
14. W.L. Johnson, “Bulk glass-forming metallic alloys: science and technology”,
MRS Bull. 24 (1999) 42
15. G. Kumar, H.X. Tang, and J. Schroers, “Nanomoulding with amorphous metals”,
Nature 457 (2009) 868
16. G. Kumar, A. Desai, and J. Schroers, “Bulk Metallic Glass: The Smaller the
Better”, Adv. Mater. 23 (2011) 461
17. C.T. Pan, T.T. Wu, M.F. Chen, Y.C. Chang, C.J. Lee, and J.C. Huang, “Hot
embossing of micro-lens array on bulk metallic glass”, Sens. Actuators, A 141
(2008) 422
18. Mamoru Ishida, Hideki Takeda, Nobuyuki Nishiyama, Kazuhiko Kita, Yukiharu
Shimizu, Yasunori Saotome, and Akihisa Inoue, “Wear resistivity of
super-precision microgear made of Ni-based metallic glass”, Mater. Sci. Eng. A
449 (2007) 149
19. J.J. He, N. Li, N. Tang, X.Y. Wang, C. Zhang, and L. Liu, “The precision
replication of a microchannel mould by hot-embossing a Zr-based bulk metallic
glass”, Intermetallics 21(2012) 50
20. C. Suryanarayana, and A. Inoue, “Bulk Metallic Glasses”, CRC, Florida, 2010
21. H.S. Chou, J.C. Huang, and L.W. Chang, “Mechanical properties of ZrCuTi thin
film metallic glass with high content of immiscible tantalum”, Surf. Coat. Technol.
205 (2010) 587
22. F.X. Liu, P.K. Liaw, W.H. Jiang, C.L. Chiang, Y.F. Gao, Y.F. Guan, J.P. Chu and,
P.D. Rack, “Fatigue-resistance enhancements by glass-forming metallic films”
Mater. Sci. Eng. A 468 (2007) 246
23. X. Liu, F.Q. Yang, Y.F. Gao, W.H. Jiang, Y.F. Guan, P.D. Rack, O. Sergic and, P.K.
Liaw, “Micro-scratch study of a magnetron-sputtered Zr-based metallic-glass
film”, Surf. Coat. Technol. 203 (2009) 3480
24. W.H. Wang, C. Dong, and C.H. Shek, “Bulk metallic glasses”, Mater. Sci. Eng. R
44 (2004) 45
25. S. Takeuchi and K. Edagawa, “Atomistic simulation and modeling of
localized shear deformation in metallic glasses”, Prog. Mater. Sci. 56 (2011) 785
26. J.W. Taylor, and M.A. Winnik, “Functional Latex and Thermoset Latex Films”,
JCT Res. 1 (2004) 163
27. H. Claesson, C. Scheurer, E. Malmström, M. Johansson, A. Hult , W. Paulus, and
R. Schwalm, “Semi-crystalline thermoset resins: tailoring rheological properties
in melt using comb structures with crystalline grafts”, Prog. Org. Coat. 49 (2004)
13
28. L. Zhang, R. Li, J. Wang, H. Zhang, N. Hua, and T. Zhang, “The influence of Ag
substitution for Cu on glass-forming ability and thermal properties of Mg-based
bulk metallic glasses”, J. Non-Cysr Solids 358 (2012) 425
29. T. Egami, S. J. Poon, Z. Zhang, and V. Keppens, “Glass transition in metallic
glasses: A microscopic model of topological fluctuations in the bonding network”,
Phys. Rev. B 76 (2007) 024203
30. Z. Zhu, H. Zhang, Z. Hu, W. Zhang, and A. Ioune, “Ta-particulate reinforced
Zr-based bulk metallic glass matrix composite with tensile plasticity”, Sripta
Mater. 62 (2010) 278
31. W.H. Wang, “Role of minor addition in the formation and proprieties of bulk
metallic glasses”, Prog. Mater. Sci. 52 (2007) 540
32. J.S.C. Jang, S.R. Jian, C.F. Chang, L.J. Chang, Y.C. Huang, T.H. Li, J.C Huang,
C.T. Liu, “Thermal and mechanical properties of the Zr53Cu30Ni9Al8 based bulk
metallic glass microalloyed with silicon”, J. Alloys Compd. 478 (2009) 215
33. B. Yao, B.Z. Ding, A.M. Wang, and Z.Q. Hu, “Effect of pressure on the
crystallization of amorphous Fe–Mo–Si–B alloy with diffusion reaction at its
surface”, Appl. Phys. Lett. 67 (1995) 2290
34. V. Ponnambalam, S.J. Poon, and G.J. Shiflet, “Fe-based bulk metallic glasses with
diameter thickness larger than one centimeter” J. Mater. Res. 19 (2004) 1320
35. C. Ma, H. Soejima, K. Amiya, N. Nishiyama, and A. Inoue, “New Ti-Based Bulk
Glassy Alloys with High Glass-Forming Ability and Superior Mechanical
Properties” Mater. Trans. JIM 45 (2004) 3223
36. Z. Liu, R. Li, H.Wang, and T. Zhang, “Nitrogen-doping effect on glass formation
and primary phase selection in Cu–Zr–Al alloys”, J. Alloys Compd. 569 (2011)
5033
37. W. H. Wang, H.Y. Bai, “Carbon induced bulk amorphous matrix composite”,
Mater. Lett. 43 59 (2000) 59
38. H. H. Liebermann, “Nitrogen as an alloying element in some metallic glasses”, J.
Mater. Sci 17 (1982) 1195
39. J. Kramer, “Der amorphe Zustand der Metalle”, Z. Phys. 106 (1937) 675
40. J. Kramer, “Der Übergang des amorphen Metalls in den kristallinen Zustand”, Z.
Phys. 111 (1938) 409
41. A. Bremer, D.E. Couch and E.K. Williams, “Electrodeposition of alloys of
phosphorus with nickel or cobalt”, J. Res. Natl. Bur. Stand. 44 (1950) 109
42. W. Klement, R. H. Wilens and P. Duwez, “Non-crystalline Structure in Solidified
Gold–Silicon Alloys”, Nature 187 (1960) 869
43. M.J. Bloch, “Effet de l'irradiation par les neutrons sur les alliages uranium-fer a
faible teneur en fer”, J. Nucl. Mater. 6 (1962) 203
44. S. Mader, “Metastable Alloy Films”, J. Vac. Sci. Technol. 2 (1965) 35.
45. R. B. Schwarz and W. L. Johnson, “Formation of an Amorphous Alloy by
Solid-State Reaction of the Pure Polycrystalline Metals” Phys. Rev. Lett. 51(1983)
415
46. W.H. Kui, A.L. Greer, D. Turnbull, “Formation of bulk metallic glass by fluxing”,
Appl. Phys. Lett. 45 (1984) 615
47. A. Inoue, T. Zhang, and T. Masumoto, “Al-La-Ni Amorphous Alloys with a Wide
Supercooled Liquid Region”, Mater. Trans. JIM 30 (1989) 965
48. A. Inoue, “Stabilization of metallic supercooled liquid and bulk amorphous
alloys”, Acta Mater. 48 (2000) 279
49. Y.Q. Cheng and E. Ma, “Atomic-level structure and structure–property
relationship in metallic glasses”, Prog. Mater. Sci. 56 (2011) 379
50. A. Inoue, “Bulk Amorphous Alloys Practical Characteristics and Applications
Institute for Material Research”, Tohoku University, Japan, 1999
51. M. Miller, P. Liaw “Bulk Metallic Glasses: An Overview”, Springer, New York,
2008
52. R. Busch, “The thermophysical properties of bulk metallic glass-forming liquids”,
J. Miner. Met. Mater. Soc. 52 (2000) 39
53. R. Busch, J. Schroers, and W.H. Wang, “Thermodynamics and kinetics of bulk
metallic glass”, MRS Bull. 32 (2007) 620
54. R. Busch, Y.J. Kim, and W.L. Johnson, “Thermodynamics and kinetics of the
undercooled liquid and the glass-transition of the Zr41.2Ti13.8Cu12.5Ni10.0Be22.5
alloy”, J. Appl. Phys. 77 (1995) 4039
55. D. Turnbull, “Under what conditions can a glass be formed”, Contemp. Phys. 10
(1969) 473
56. W.L. Johnson, K. Samwer, “A universal criterion for plastic yielding of metallic
glasses with a (T/T-g)(2/3) temperature dependence”, Phys. Rev. Lett. 95 (2005)
195501
57. B. Yang, C.T. Liu, and T.G. Nieh, “Unified equation for the strength of bulk
metallic glasses”, Appl. Phys. Lett. 88 (2006) 221911
58. S.G. Mayr, “Relaxation kinetics and mechanical stability of metallic glasses and
supercooled melts”, Phys. Rev. B79 (2009) 060201
59. Y. H. Liu, C. T. Liu, W. H. Wang, A. Inoue, T. Sakurai, and M. W. Chen,
“Thermodynamic Origins of Shear Band Formation and the Universal Scaling
Law of Metallic Glass Strength”, Phys. Rev. Lett. 103 (2009) 065504
60. R. Behrisch Ed., "Sputtering by particle bombardment", Applied Physics, 47,
Berlin, Springer (1981)
61. P. D. Toensend, and J. C. Kelly, “Ion implantation: Sputtering and their
applications” , Academic Press, (1976)
62. M. Ohring Ed., “The materials science of thin films”, Academic Press,
London, UK, (1992) Chap.3 123-124
63. S. PalDey, S.C. Deevi, “Single layer and multilayer wear resistant coatings of
(Ti,Al)N: a review”, Mater. Sci. Eng. A 342 (2003) 58
64. H.A. Jehn, S. Hofmann, V.E. Rückborn, W.D. Münz, “Morphology and properties
of sputtered (Ti, Al)N layers on high-speed steel substrate as a function of
deposition temperature and sputtering atmosphere”, J. Vac. Sci. Technol. 6 (1986)
2701
65. L.A. Donohue, W.D. Münz, D.B. Lewis, J. Cawley, T. Hurkmans, T. Trinh, I.
Petrov, J.E. Greene, “Large-scale fabrication of hard superlattice thin films by
combined steered arc evaporation and unbalanced magnetron sputtering”, Surf.
Coat. Technol. 93 (1997) 69
66. P.C. Jindal, A.T. Santhanam, U. Schleinkofer, and A.F. Shuster, “Performance of
PVD TiN, TiCN, and TiAlN coated cemented carbide tools in turning”, Int. J.
Refract. Met. Hard Mat. 17 (1999) 163
67. H.G. Prengel, A.T. Santhanam, R.M. Penich, P.C. Jindal, and K.H. Wendt
“Advanced PVD-TiAlN coatings on carbide and cermet cutting tools”, Surf. Coat.
Technol. 94 (1997) 597
68 H. Bartzsch, P. Frach, and K. Goedicke, “Anode effects on energetic particle
bombardment of the substrate in pulsed magnetron sputtering”, Surf. Coat.
Technol. 132 (200) 244
69. R.D. Arnell, P.J. Kelly, and J.W. Bradley, “Recent developments in pulsed
magnetron sputtering”, Surf. Coat. Technol. 188 (2004) 158
70. J. Sellers, “Asymmetric bipolar pulsed DC: the enabling technology for reactive
PVD”, Surf. Coat. Technol. 98 (1998) 1245
71. A. Inoue, T. Zhang, and T. Masumoto, “Preparation of Bulky Amorphous
Zr-Al-Co-Ni-Cu Alloys by Copper Mold Casting and Their Thermal and
Mechanical Properties”, Mater. Trans. JIM 36 (1995) 391
72. T. Zhang and A. Inoue, “Thermal and Mechanical Properties of Ti-Ni-Cu-Sn
Amorphous Alloys with a Wide Supercooled Liquid Region before Crystallization”, Mater. Trans. JIM 39 (1998) 1001
73. T. Zhang and A. Inoue, “New Bulk Glassy Ni-Based Alloys with High Strength of
3000 MPa”, Mater. Trans. 43 (2002) 708
74. W. Zhang and A. Inoue, “Effects of Ti on the Thermal Stability and Glass-Forming
Ability of Ni-Nb Glassy Alloy”, Mater. Trans. 43 (2002) 2342
75. A. Inoue, W. Zhang, T. Zhang, K. Kurosaka, “High-strength Cu-based bulk glassy
alloys in Cu–Zr–Ti and Cu–Hf–Ti ternary systems”, Acta Mater. 49 (2001)2645
76. A. Inoue, “Stabilization and high strain-rate superplasticity of metallic supercooled liquid”, Mater. Sci. Eng. A 267 (1999) 171
77. D. Arias and J.P. Abriata, “Cu-Zr (Copper-Zirconium)”, Bull. Alloy Phase Diagr,
11 (1990) 453
78. P. Yu, Y. Bai, and W.H. Wang, “Superior glass-forming ability of CuZr alloys from
minor additions”, J. Mater. Res. 21 (2006) 1674
79. Japan Institute of Metals, “Metals Databook”, Maruzen, Tokyo, 1983
80. F.R. de Boer, R. Boom, W.C.M Mattens, A.R. Miedema, and A.K. Niessen, “ Cohesion in Metals: transition metal alloys”, Amsterdam, North-Holland, 1988
81. F. Qiu, H. Wang, T. Liu, and Q. Jiang, “Influence of Al content on the microstructure and mechanical property of the (Zr2Cu)100 − xAlx alloys” J. Alloys Compd. 468 (2009) 195
82. P. Yu, H.Y. Bai, and W.H. Wang, “Superior glass-forming ability of CuZr alloys
from minor additions”, J. Mater. Res. 21 (2006) 1674
83. A. Inoue and W. Zhang, “Formation, Thermal Stability and Mechanical
Properties of Cu–Zr–Al Bulk Glassy Alloys”, Mater. Trans. 43 (2002) 2921
84. Y.Q. Cheng , E. Ma , H.W. Sheng, “Atomic level structure in multicomponent bulk
metallic glass”, Phys. Rev. Lett. 102 (2009) 245501
85. Q. S. Zhang, W. Zhang, and A. Inoue, “New Cu–Zr-based bulk metallic glasses
with large diameters of up to 1.5 cm”, Scr. Mater. 55 (2006) 711
86. W. Zhang, Q. Zhang, C. Qin, and A. Inoue, “Synthesis and properties of Cu–Zr–
Ag–Al glassy alloys with high glass-forming ability”, Mater. Sci. Eng. A 148 (2008) 92
87. Q. S. Zhang, W. Zhang, and A. Inoue, “Preparation of Cu36 Zr48Ag8A8 Bulk
Metallic Glass with a Diameter of 25 mm by Copper Mold Casting”, Mater. Trans. 48 (2007) 629
88. D.G. Kim, T.Y. Seong, and Y J. Baik, “Oxidation behavior of TiN/AlN multilayer
films prepared by ion beam-assisted deposition”, Thin Solid Films 397 (2001)
203
89. C.M. Cheng and Y.T. Cheng, “On the initial unloading slope in indentation of elastic-plastic solids by an indenter with an axisymmetric smooth profile”, Appl. Phys. Lett. 71 (1997) 2623
90. W.C. Oliver, “Alternative technique for analyzing instrumented indentation data”, J. Mater. Res. 16 (2001) 3202
91. .W.C. Oliver, G.M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments”, J. Matter. Res. 7 (1992) 1564
92. M.J. Laugier, “adhesion of TiC and TiN coatings prepared by chemical vapour deposition on WC-Co-based cemented carbides”, J. Mater. Sci. 21 (1986) 2269
93. P. R. Chalker, S. J. Bull and D. S. Rickerby, “A review of the methods for the evaluation of coating-substrate adhesion”, Mater. Sci. Eng. A 140 (1991) 583
94. G.W.H. Hohne, W.F. Hemminger, and H.J. Flasmmersheim, “Differential Scanning Calorimetry”, Springer, Berlin, 2003
95. J.M. Bennett and L. Mattsson, “Introduction to Surface Roughness and Scattering”, Optical Society of America, Washington, D. C., 1989
96. T. R. Thomas, “Rough Surfaces” , Imperial College Press, London, 1999
97. D. B. Williams, C. Barry Carter, “Transmission Electron Microscopy”, 2nd ed. Plenum Press, New York, 2009
98. R. Chang, “Chemistry”, McGraw-Hill, New York, 2004
99. J.I. Goldstein, “Scanning Electron Microscopy and X-ray Microanalysis”, 3rd ed. Plenum Press, New York, 2003
100. A. Hirata, T. Hirotsu, T. Ohkubo, N. Takana, and T.G. Nieh, “Local atomic structure of Pd–Ni–P bulk metallic glass examined by high-resolution electron microscopy and electron diffraction”, Intermetallics 14 (2006) 903
101. M. Shapaan, A. Bárdos , L.K. Varga, J. Lendvai. “Thermal stability and glass forming ability of cast iron–phosphorus amorphous alloys” Mater. Sic. Eng. A 366 (2004) 6
102. N. Jakse, A. Pasturel, “Local order of liquid and supercooled zirconium by ab initio molecular dynamics”, Phys. Rev. Lett. 291 (003) 195501.
103. H.M. Tung, J.H. Huang , D.G. Tsai , C.F. Ai , G.P. Yu, “Hardness and residual stress in nanocrystalline ZrN films: Effect of bias voltage and heat treatment”, Mater. Sci. Eng. A 500 (2009) 104
104. A. Guinier, “X-Ray diffraction in crystals, imperfect crystals and amorphous bodies”, Dover, New York, 1994.
105. A. Caron, R. Wunderlich, D.V. Louzquine-Luzgin, G. Xie, A. Inoue, and H.J. Fecht, “Influence of minor aluminum concentration changes in zirconium-based bulk metallic glasses on the elastic, anelastic,and plastic properties”, Acta Mater. 58 (2010) 2004
106. T.C. Hufnagel and S, Brennan, “Short- and medium-range order in (Zr70Cu20Ni10)90-xTaxAl10 bulk amorphous alloys”, Phys. Rev. B 67 (2003) 014203
107. F.Zeng, Y.Gao, L.Li, D.M. Li, and F. Pan, “Elastic modulus and hardness of Cu–Ta amorphous films”, J. Alloys Compd. 389 (2005) 75.
108. M.M. Trexler and N.N. Thadhami, “Mechanical properties of bulk metallic glasses”, Prog. Mater. Sci. 55 (2010) 759
109. F. Attar and T. Johannesson, “Adhesion evaluation of thin ceramic coatings on tool steel using the scratch testing technique”, Surf. Coat. Technol. 78 (1996) 87.
110. P.J. Burnett and D.S. Rickerby, “The relationship between hardness and scratch adhession” Thin Solid Films 154 (1987) 403.
111. B.R. Lawn, A.G. Evans, and D.B. Marshall, “Elastic/Plastic Indentation Damage in Ceramics: The Median/Radial Crack System” J. Am. Ceram. Soc. 63 (1980) 574
112. S. Zhang, D. Sun, Y.Q. Fu and H. Du, “Effect of sputtering target power on microstructure and mechanical properties of nanocomposite nc-TiN/a-SiNx thin films”, Thin Solid Film 447–448 (2004) 462.
113. D.B. Miracle, D.V. Louzguine-Luzgin, L.V. Louzguina-Luzgina, and A. Inoue, “An assessment of binary metallic glasses-- correlations between structure, glass forming ability and stability”, Int. Mater. Rev. 55 (2010) 218
114. A.Y. Liu, and M.L. Cohen, “Prediction of New Low Compressibility Solids”, Science 245 (1989) 841
115. S. Takeuchi and K. Edagawa, “Atomistic simulation and modeling of localized shear deformation in metallic glasses”, Prog. Mater. Sci. 56 (2011) 785
116. T. Egami, “Atomic level stresses”, Prog. Mater. Sci. 56 (2011) 637
117. P. Guan, M.W. Chen, and T. Egami, “Stress-Temperature Scaling for Steady-State Flow in Metallic Glasses”, Phys. Rev. Lett 104 (2010) 205701.
118. Y. Suzuki, J. Haimovich, T. Egami, “Bond-orientational anisotropy in metallic glasses observed by x-ray diffraction”, Phys. Rev. Lett B 35 (1987) 2162
119. C.N. Kuo, H.M. Chen, X.H. Du, and J.C. Huang, “Flow serrations and fracture morphologies of Cu-based bulk metallic glasses in energy release perspective”, Intermetallics 18 (2010) 1648
120. J.J. Lewandowski, and A.L. Greer, Nat. Mater. 5 (2006) 15
121. H.W. Sheng, W.K. Luo, F.M. Alamgir, J.M. Bai, and E. Ma, “Temperature rise at shear bands in metallic glasses”, Nature 439 (2006) 419
122. W.L. Johnson, M.D. Demetriou, J.S. Harmon, M.L. Lind, and K. Samwer, “Rheology and Ultrasonic Properties of Metallic Glass-Forming Liquids: A Potential Energy Landscape Perspective”, MRS Bull. 32 (2007) 644