簡易檢索 / 詳目顯示

研究生: 陳寳升
Chen, Pao-Sheng
論文名稱: 藉由鉭、氮添加於鋯-銅-鋁-銀金屬玻璃薄膜 以提升熱及機械特性
Doping of Tantalum and Nitrogen in Zr-Cu-Al-Ag Thin Film Metallic Glass for Improved Thermal and Mechanical Properties
指導教授: 杜正恭
Duh, Jenq-Gong
口試委員: 李志偉
Lee, Jyh-Wei
吳芳賓
Wu, Fan-Bean
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 132
中文關鍵詞: 金屬玻璃薄膜濺鍍脈衝直流熱性質機械性質
外文關鍵詞: thin film metallic glass, sputtering, Pulsed-DC, thermal berhavior, mechanical behavior
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 金屬玻璃由於具良好機械性質、高表面精度等獨特性質,在諸多前瞻領域深具應用潛力,其中硬度和熱穩定性之提升為各種應用中共通的目標。添加微量元素在金屬玻璃中為一提升機械與熱性質之有效方法。氮元素由於其高電負度與小原子半徑,預期會對金屬玻璃性質造成極為顯著影響。
    本研究中,藉由氮原子添加於鋯銅鋁銀金屬中發展出一新金屬玻璃系譜。從Tg和彈性模數趨勢可看出氮原子之添加可使玻璃態自由能降低。當氮添加濃度增高時,會形成更多以氮原子為中心之團簇,更難被塑性變形。藉由氮添加,起始結晶溫度(Tx)比起一般鋯基金屬玻璃來得高出許多,顯示該非晶態擁有更低位能。先在鋯銅鋁銀中引入鉭原子,可藉由氮化鉭結晶態之競爭使氮化鋯之結晶態較不穩定,最終使氮元素在鉭鋯銅鋁銀金屬玻璃薄膜中的非晶成份區間變寬。氮添加之鉭鋯銅鋁銀金屬玻璃薄膜硬度可超過10 GPa、Tg接近800 K、過冷液態區間 (supercool liquid region) 寬達112 K,在鋯基金屬玻璃中展現優異的熱及機械性質。


    Owing to the unique properties, such as excellent mechanical performance, and nano-scale surface roughness, metallic glass can be applied in various novel fields. Meanwhile, the improvement of thermal stability and hardness is the common target in these applications. Minor alloying is an effective method to enhance the thermal and mechanical properties of metallic glasses. Different from elements used to be doped into metallic glass, the role nitrogen atoms play in metallic glass is quite distinct and critically important, owing to its strong electronegativity and small atomic radius.
    In this work, an alternative class of metallic glass is developed. By adding nitrogen into Zr-Cu-Al-Ag TFMG, the configuration energy of short range structure is greatly modified. From the viewpoint of thermal behavior, the evolution of Tg and elastic modulus with nitrogen could be well correlated, implying significant effect of nitrogen atoms on the potential energy landscape (PEL) of the TFMGs. Besides, more amounts of nitrogen addition lead to the increase of short range order structure in the amorphous matrix. That is, most metallic atoms are strongly attracted by nitrogen, forming the nitrogen-centered cluster, in which more energy is required to cause plastic deformation. On the other hand, a meta-stable state with lower energy is attained as indicated by the much higher Tx than normal Zr-based metallic glasses. However, the amorphicity region of nitrogen in Zr-Cu-Al-Ag metallic glass is not wide enough, restricting the enhancement amount of thermal and mechanical performances. By incorporating Ta firstly, the competing ZrN crystalline phase is destabilized, leading to the wider amorphicity region of nitrogen in Ta-Zr-Cu-Al-Ag TFMG. As a result, hardness over 10 GPa, Tg near 800 K, and supercool liquid region as wide as 112K is achieved in the nitrogen-doped Ta-Zr-Cu-Al-Ag TFMG.

    Contents………………………………………………………………….I List of Tables…………………………………………………………...IV Figure Captions………………………………………………………..V Abstract………………………………………………………………....X Chapter 1 Introduction…………………………………………………1 1.1 Background………………………………………………………1 1.2 Thin film metallic glass (TFMG)………………………………..2 1.3 Motivation and objectives………………………………………..3 1.4 Thesis overview…………………………………………….……6 Chapter 2 Literature Review…………………………………………...8 2.1 The development of metallic glass………………………………8 2.2 Classes of metallic glass………………………………………..10 2.3 Characters of metallic glass…………………………………….14 2.4 Sputtering technique……………………………………………24 2.4.1 Sputtering………………………………………………...24 2.4.2 Magnetron sputtering…………………………………….25 2.4.3 Pulsed-DC magnetron sputtering………………………...29 2.5 Review of Zr/Cu-based metallic glass…………………………..34 2.5.1 Zr-Cu-Al metallic glass…………………………………...36 2.5.2 Zr-Cu-Al-Ag metallic glass……………………………….40 2.7 Properties evaluation and characterizations…………………….41 2.7.1 Nano-indentation Method………………………………..41 2.7.2 Nano-scratch Method…………………………………….45 2.7.3 Differential scanning calorimetry………………………..47 2.7.4 Surface roughness measurement…………………………49 2.7.5 Transmission Electron Microscopy (TEM)……………...49 Chapter 3 Experiment Procedure………………………………..53 3.1 Sample preparations………………...…………………………..53 3.2 Sputtering deposition……………………...……………………55 3.2.1 Deposition of nitrogen-doped Zr-Cu-Al-Ag TFMG..55 3.2.2 Fabrication of Tantalum-doped Zr-Cu-Al-Ag TFMG……58 3.2.3 Deposition of nitrogen- and Ta-doped Zr-Cu-Al-Ag TFMG…………………………………..........................60 3.3 Measurement and analysis…………………………………62 3.3.1 Composition analysis………………………………..62 3.3.2 Phase identification………………………………….62 3.3.3 Nanohardness and elastic modulus………………….62 3.3.4 Evaluation of adhesion………………………………63 3.3.5 Measurement of glass transition temperature and onset crystallization temperature…………………………..…...63 3.3.6 Surface characterization………………………………....64 3.3.7 Microstructure analysis……………………………..…...64 Chapter 4 Results and Discussions……………………………………65 4.1 The amorphicity region of nitrogen in Zr-Cu-Al-Ag TFMG…..65 4.1.1 Composition & Amorphicity…………………………….65 4.1.2 Nanohardness…………………………………………….70 4.2 Mechanical properties of Ta-doped Zr-Cu-Al-Ag TFMG……...73 4.2.1 Composition and microstructure…………………………73 4.2.2 Nanohardness and elastic modulus………………………79 4.2.3 Adhesion and scratch crack propagation resistance……...84 4.3 Thermal and Mechanical behaviors of nitrogen- and Ta-doped Zr-Cu-Al-Ag TFMG……………………………………………91 4.3.1 Composition and Amorphicity…………………………...91 4.3.2 Thermal and mechanical behaviors……………………...99 4.3.3 Role and effect of nitrogen in Zr-Cu-Al-Ag TFMG……103 4.4 A criteria for the amorphicity region of nitrogen in TFMG…...108 Chapter 5 Conclusions………………………………………………..116 References……………………………………………………………..118

    References
    1. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of
    dielectrics”, Nat. Mater. 8 (2009) 568
    2. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D.
    R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies ”,
    Science 314 (2006) 977
    3. N. M. Litchinitser and V. M. Shalaev, “Metamaterials: transforming theory into
    reality”, J. Opt. Soc. Am. B 26 (2009) B161
    4. Y. Saotome, and H. Iwazaki, “Superplastic backward microextrusion of microparts
    for micro-electro-mechanical systems”, J. Mater. Process. Technol. 119 (2001) 307
    5. B. Redding , S. Shi, T. Creazzo, E. Marchena, and D.W. Prather, “Design and
    characterization of silicon nanocrystal microgear resonator”, Phot. Nano. Fund.
    Appl. 8 (2010) 177
    6. Kentaro Oda, Hidekuni Takao, Kyohei Terao, Takaaki Suzuki, Fusao Shimokawa,
    Ichirou Ishimaru, Fumikazu Oohira, “Vertical comb-drive MEMS mirror with
    sensing function for phase-shift device”, Sens. Actuators, A 181 (2012) 61
    7. H. Liu, and T.J. Webster, “Nanomedicine for implants: a review of studies and
    necessary experimental tools”, Biomaterials 28 (2007) 354
    8. Elisabeth Engel, Alexandra Michiardi, Melba Navarro, Damien Lacroix,
    and Josep A. Planell, “Nanotechnology in regenerative medicine: the materials
    side”, Trends Biotechnol. 26 (2007) 39
    9. H. Becker, and C. Cartner, “Polymer microfabrication technologies for microfluidic
    systems”, Anal. Bioanal. Chem. 390 (2008) 89
    10. D.R. Barbero, M.S.M. Saifullah, P. Hoffmann, H.J. Mathieu, D. Anderson, G.A.C.
    Jones, M.E. Welland, and U. Steiner, “High resolution nanoimprinting with a
    robust and reusable polymer mold”, Adv. Funct. Mater. 17 (2007) 2419
    11. H, Lorenz , M. Despont , N. Fahrni, N. LaBianca, P. Renaud and P. Vettiger,
    “SU-8: a low-cost negative resist for MEMS”, J. Micromech. Microeng. 7(1997)
    121
    12 B. Lee, K.J. Cha, and T.H. Kwon, “Fabrication of polymer micro/nano-hybrid lens
    array by microstructured anodic aluminum oxide (AAO) mold”, Microelectron.
    Eng. 86 (2009) 857
    13. E. Kukharenka, M.M. Farooqui, L. Grigore, M. Kraft, and N. Hollinshead,
    “Electroplating moulds using dry film thick negative photoresist”, J. Micromech.
    Microeng. 13 (2003) S67
    14. W.L. Johnson, “Bulk glass-forming metallic alloys: science and technology”,
    MRS Bull. 24 (1999) 42
    15. G. Kumar, H.X. Tang, and J. Schroers, “Nanomoulding with amorphous metals”,
    Nature 457 (2009) 868
    16. G. Kumar, A. Desai, and J. Schroers, “Bulk Metallic Glass: The Smaller the
    Better”, Adv. Mater. 23 (2011) 461
    17. C.T. Pan, T.T. Wu, M.F. Chen, Y.C. Chang, C.J. Lee, and J.C. Huang, “Hot
    embossing of micro-lens array on bulk metallic glass”, Sens. Actuators, A 141
    (2008) 422
    18. Mamoru Ishida, Hideki Takeda, Nobuyuki Nishiyama, Kazuhiko Kita, Yukiharu
    Shimizu, Yasunori Saotome, and Akihisa Inoue, “Wear resistivity of
    super-precision microgear made of Ni-based metallic glass”, Mater. Sci. Eng. A
    449 (2007) 149
    19. J.J. He, N. Li, N. Tang, X.Y. Wang, C. Zhang, and L. Liu, “The precision
    replication of a microchannel mould by hot-embossing a Zr-based bulk metallic
    glass”, Intermetallics 21(2012) 50
    20. C. Suryanarayana, and A. Inoue, “Bulk Metallic Glasses”, CRC, Florida, 2010
    21. H.S. Chou, J.C. Huang, and L.W. Chang, “Mechanical properties of ZrCuTi thin
    film metallic glass with high content of immiscible tantalum”, Surf. Coat. Technol.
    205 (2010) 587
    22. F.X. Liu, P.K. Liaw, W.H. Jiang, C.L. Chiang, Y.F. Gao, Y.F. Guan, J.P. Chu and,
    P.D. Rack, “Fatigue-resistance enhancements by glass-forming metallic films”
    Mater. Sci. Eng. A 468 (2007) 246
    23. X. Liu, F.Q. Yang, Y.F. Gao, W.H. Jiang, Y.F. Guan, P.D. Rack, O. Sergic and, P.K.
    Liaw, “Micro-scratch study of a magnetron-sputtered Zr-based metallic-glass
    film”, Surf. Coat. Technol. 203 (2009) 3480
    24. W.H. Wang, C. Dong, and C.H. Shek, “Bulk metallic glasses”, Mater. Sci. Eng. R
    44 (2004) 45
    25. S. Takeuchi and K. Edagawa, “Atomistic simulation and modeling of
    localized shear deformation in metallic glasses”, Prog. Mater. Sci. 56 (2011) 785
    26. J.W. Taylor, and M.A. Winnik, “Functional Latex and Thermoset Latex Films”,
    JCT Res. 1 (2004) 163
    27. H. Claesson, C. Scheurer, E. Malmström, M. Johansson, A. Hult , W. Paulus, and
    R. Schwalm, “Semi-crystalline thermoset resins: tailoring rheological properties
    in melt using comb structures with crystalline grafts”, Prog. Org. Coat. 49 (2004)
    13
    28. L. Zhang, R. Li, J. Wang, H. Zhang, N. Hua, and T. Zhang, “The influence of Ag
    substitution for Cu on glass-forming ability and thermal properties of Mg-based
    bulk metallic glasses”, J. Non-Cysr Solids 358 (2012) 425
    29. T. Egami, S. J. Poon, Z. Zhang, and V. Keppens, “Glass transition in metallic
    glasses: A microscopic model of topological fluctuations in the bonding network”,
    Phys. Rev. B 76 (2007) 024203
    30. Z. Zhu, H. Zhang, Z. Hu, W. Zhang, and A. Ioune, “Ta-particulate reinforced
    Zr-based bulk metallic glass matrix composite with tensile plasticity”, Sripta
    Mater. 62 (2010) 278
    31. W.H. Wang, “Role of minor addition in the formation and proprieties of bulk
    metallic glasses”, Prog. Mater. Sci. 52 (2007) 540
    32. J.S.C. Jang, S.R. Jian, C.F. Chang, L.J. Chang, Y.C. Huang, T.H. Li, J.C Huang,
    C.T. Liu, “Thermal and mechanical properties of the Zr53Cu30Ni9Al8 based bulk
    metallic glass microalloyed with silicon”, J. Alloys Compd. 478 (2009) 215
    33. B. Yao, B.Z. Ding, A.M. Wang, and Z.Q. Hu, “Effect of pressure on the
    crystallization of amorphous Fe–Mo–Si–B alloy with diffusion reaction at its
    surface”, Appl. Phys. Lett. 67 (1995) 2290
    34. V. Ponnambalam, S.J. Poon, and G.J. Shiflet, “Fe-based bulk metallic glasses with
    diameter thickness larger than one centimeter” J. Mater. Res. 19 (2004) 1320
    35. C. Ma, H. Soejima, K. Amiya, N. Nishiyama, and A. Inoue, “New Ti-Based Bulk
    Glassy Alloys with High Glass-Forming Ability and Superior Mechanical
    Properties” Mater. Trans. JIM 45 (2004) 3223
    36. Z. Liu, R. Li, H.Wang, and T. Zhang, “Nitrogen-doping effect on glass formation
    and primary phase selection in Cu–Zr–Al alloys”, J. Alloys Compd. 569 (2011)
    5033
    37. W. H. Wang, H.Y. Bai, “Carbon induced bulk amorphous matrix composite”,
    Mater. Lett. 43 59 (2000) 59
    38. H. H. Liebermann, “Nitrogen as an alloying element in some metallic glasses”, J.
    Mater. Sci 17 (1982) 1195
    39. J. Kramer, “Der amorphe Zustand der Metalle”, Z. Phys. 106 (1937) 675
    40. J. Kramer, “Der Übergang des amorphen Metalls in den kristallinen Zustand”, Z.
    Phys. 111 (1938) 409
    41. A. Bremer, D.E. Couch and E.K. Williams, “Electrodeposition of alloys of
    phosphorus with nickel or cobalt”, J. Res. Natl. Bur. Stand. 44 (1950) 109
    42. W. Klement, R. H. Wilens and P. Duwez, “Non-crystalline Structure in Solidified
    Gold–Silicon Alloys”, Nature 187 (1960) 869
    43. M.J. Bloch, “Effet de l'irradiation par les neutrons sur les alliages uranium-fer a
    faible teneur en fer”, J. Nucl. Mater. 6 (1962) 203
    44. S. Mader, “Metastable Alloy Films”, J. Vac. Sci. Technol. 2 (1965) 35.
    45. R. B. Schwarz and W. L. Johnson, “Formation of an Amorphous Alloy by
    Solid-State Reaction of the Pure Polycrystalline Metals” Phys. Rev. Lett. 51(1983)
    415
    46. W.H. Kui, A.L. Greer, D. Turnbull, “Formation of bulk metallic glass by fluxing”,
    Appl. Phys. Lett. 45 (1984) 615
    47. A. Inoue, T. Zhang, and T. Masumoto, “Al-La-Ni Amorphous Alloys with a Wide
    Supercooled Liquid Region”, Mater. Trans. JIM 30 (1989) 965
    48. A. Inoue, “Stabilization of metallic supercooled liquid and bulk amorphous
    alloys”, Acta Mater. 48 (2000) 279
    49. Y.Q. Cheng and E. Ma, “Atomic-level structure and structure–property
    relationship in metallic glasses”, Prog. Mater. Sci. 56 (2011) 379
    50. A. Inoue, “Bulk Amorphous Alloys Practical Characteristics and Applications
    Institute for Material Research”, Tohoku University, Japan, 1999
    51. M. Miller, P. Liaw “Bulk Metallic Glasses: An Overview”, Springer, New York,
    2008
    52. R. Busch, “The thermophysical properties of bulk metallic glass-forming liquids”,
    J. Miner. Met. Mater. Soc. 52 (2000) 39
    53. R. Busch, J. Schroers, and W.H. Wang, “Thermodynamics and kinetics of bulk
    metallic glass”, MRS Bull. 32 (2007) 620
    54. R. Busch, Y.J. Kim, and W.L. Johnson, “Thermodynamics and kinetics of the
    undercooled liquid and the glass-transition of the Zr41.2Ti13.8Cu12.5Ni10.0Be22.5
    alloy”, J. Appl. Phys. 77 (1995) 4039
    55. D. Turnbull, “Under what conditions can a glass be formed”, Contemp. Phys. 10
    (1969) 473
    56. W.L. Johnson, K. Samwer, “A universal criterion for plastic yielding of metallic
    glasses with a (T/T-g)(2/3) temperature dependence”, Phys. Rev. Lett. 95 (2005)
    195501
    57. B. Yang, C.T. Liu, and T.G. Nieh, “Unified equation for the strength of bulk
    metallic glasses”, Appl. Phys. Lett. 88 (2006) 221911
    58. S.G. Mayr, “Relaxation kinetics and mechanical stability of metallic glasses and
    supercooled melts”, Phys. Rev. B79 (2009) 060201
    59. Y. H. Liu, C. T. Liu, W. H. Wang, A. Inoue, T. Sakurai, and M. W. Chen,
    “Thermodynamic Origins of Shear Band Formation and the Universal Scaling
    Law of Metallic Glass Strength”, Phys. Rev. Lett. 103 (2009) 065504
    60. R. Behrisch Ed., "Sputtering by particle bombardment", Applied Physics, 47,
    Berlin, Springer (1981)
    61. P. D. Toensend, and J. C. Kelly, “Ion implantation: Sputtering and their
    applications” , Academic Press, (1976)
    62. M. Ohring Ed., “The materials science of thin films”, Academic Press,
    London, UK, (1992) Chap.3 123-124
    63. S. PalDey, S.C. Deevi, “Single layer and multilayer wear resistant coatings of
    (Ti,Al)N: a review”, Mater. Sci. Eng. A 342 (2003) 58
    64. H.A. Jehn, S. Hofmann, V.E. Rückborn, W.D. Münz, “Morphology and properties
    of sputtered (Ti, Al)N layers on high-speed steel substrate as a function of
    deposition temperature and sputtering atmosphere”, J. Vac. Sci. Technol. 6 (1986)
    2701
    65. L.A. Donohue, W.D. Münz, D.B. Lewis, J. Cawley, T. Hurkmans, T. Trinh, I.
    Petrov, J.E. Greene, “Large-scale fabrication of hard superlattice thin films by
    combined steered arc evaporation and unbalanced magnetron sputtering”, Surf.
    Coat. Technol. 93 (1997) 69
    66. P.C. Jindal, A.T. Santhanam, U. Schleinkofer, and A.F. Shuster, “Performance of
    PVD TiN, TiCN, and TiAlN coated cemented carbide tools in turning”, Int. J.
    Refract. Met. Hard Mat. 17 (1999) 163
    67. H.G. Prengel, A.T. Santhanam, R.M. Penich, P.C. Jindal, and K.H. Wendt
    “Advanced PVD-TiAlN coatings on carbide and cermet cutting tools”, Surf. Coat.
    Technol. 94 (1997) 597
    68 H. Bartzsch, P. Frach, and K. Goedicke, “Anode effects on energetic particle
    bombardment of the substrate in pulsed magnetron sputtering”, Surf. Coat.
    Technol. 132 (200) 244
    69. R.D. Arnell, P.J. Kelly, and J.W. Bradley, “Recent developments in pulsed
    magnetron sputtering”, Surf. Coat. Technol. 188 (2004) 158
    70. J. Sellers, “Asymmetric bipolar pulsed DC: the enabling technology for reactive
    PVD”, Surf. Coat. Technol. 98 (1998) 1245
    71. A. Inoue, T. Zhang, and T. Masumoto, “Preparation of Bulky Amorphous
    Zr-Al-Co-Ni-Cu Alloys by Copper Mold Casting and Their Thermal and
    Mechanical Properties”, Mater. Trans. JIM 36 (1995) 391
    72. T. Zhang and A. Inoue, “Thermal and Mechanical Properties of Ti-Ni-Cu-Sn
    Amorphous Alloys with a Wide Supercooled Liquid Region before Crystallization”, Mater. Trans. JIM 39 (1998) 1001
    73. T. Zhang and A. Inoue, “New Bulk Glassy Ni-Based Alloys with High Strength of
    3000 MPa”, Mater. Trans. 43 (2002) 708
    74. W. Zhang and A. Inoue, “Effects of Ti on the Thermal Stability and Glass-Forming
    Ability of Ni-Nb Glassy Alloy”, Mater. Trans. 43 (2002) 2342
    75. A. Inoue, W. Zhang, T. Zhang, K. Kurosaka, “High-strength Cu-based bulk glassy
    alloys in Cu–Zr–Ti and Cu–Hf–Ti ternary systems”, Acta Mater. 49 (2001)2645
    76. A. Inoue, “Stabilization and high strain-rate superplasticity of metallic supercooled liquid”, Mater. Sci. Eng. A 267 (1999) 171
    77. D. Arias and J.P. Abriata, “Cu-Zr (Copper-Zirconium)”, Bull. Alloy Phase Diagr,
    11 (1990) 453
    78. P. Yu, Y. Bai, and W.H. Wang, “Superior glass-forming ability of CuZr alloys from
    minor additions”, J. Mater. Res. 21 (2006) 1674
    79. Japan Institute of Metals, “Metals Databook”, Maruzen, Tokyo, 1983
    80. F.R. de Boer, R. Boom, W.C.M Mattens, A.R. Miedema, and A.K. Niessen, “ Cohesion in Metals: transition metal alloys”, Amsterdam, North-Holland, 1988
    81. F. Qiu, H. Wang, T. Liu, and Q. Jiang, “Influence of Al content on the microstructure and mechanical property of the (Zr2Cu)100 − xAlx alloys” J. Alloys Compd. 468 (2009) 195
    82. P. Yu, H.Y. Bai, and W.H. Wang, “Superior glass-forming ability of CuZr alloys
    from minor additions”, J. Mater. Res. 21 (2006) 1674
    83. A. Inoue and W. Zhang, “Formation, Thermal Stability and Mechanical
    Properties of Cu–Zr–Al Bulk Glassy Alloys”, Mater. Trans. 43 (2002) 2921
    84. Y.Q. Cheng , E. Ma , H.W. Sheng, “Atomic level structure in multicomponent bulk
    metallic glass”, Phys. Rev. Lett. 102 (2009) 245501
    85. Q. S. Zhang, W. Zhang, and A. Inoue, “New Cu–Zr-based bulk metallic glasses
    with large diameters of up to 1.5 cm”, Scr. Mater. 55 (2006) 711
    86. W. Zhang, Q. Zhang, C. Qin, and A. Inoue, “Synthesis and properties of Cu–Zr–
    Ag–Al glassy alloys with high glass-forming ability”, Mater. Sci. Eng. A 148 (2008) 92
    87. Q. S. Zhang, W. Zhang, and A. Inoue, “Preparation of Cu36 Zr48Ag8A8 Bulk
    Metallic Glass with a Diameter of 25 mm by Copper Mold Casting”, Mater. Trans. 48 (2007) 629
    88. D.G. Kim, T.Y. Seong, and Y J. Baik, “Oxidation behavior of TiN/AlN multilayer
    films prepared by ion beam-assisted deposition”, Thin Solid Films 397 (2001)
    203
    89. C.M. Cheng and Y.T. Cheng, “On the initial unloading slope in indentation of elastic-plastic solids by an indenter with an axisymmetric smooth profile”, Appl. Phys. Lett. 71 (1997) 2623
    90. W.C. Oliver, “Alternative technique for analyzing instrumented indentation data”, J. Mater. Res. 16 (2001) 3202
    91. .W.C. Oliver, G.M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments”, J. Matter. Res. 7 (1992) 1564
    92. M.J. Laugier, “adhesion of TiC and TiN coatings prepared by chemical vapour deposition on WC-Co-based cemented carbides”, J. Mater. Sci. 21 (1986) 2269
    93. P. R. Chalker, S. J. Bull and D. S. Rickerby, “A review of the methods for the evaluation of coating-substrate adhesion”, Mater. Sci. Eng. A 140 (1991) 583
    94. G.W.H. Hohne, W.F. Hemminger, and H.J. Flasmmersheim, “Differential Scanning Calorimetry”, Springer, Berlin, 2003
    95. J.M. Bennett and L. Mattsson, “Introduction to Surface Roughness and Scattering”, Optical Society of America, Washington, D. C., 1989
    96. T. R. Thomas, “Rough Surfaces” , Imperial College Press, London, 1999
    97. D. B. Williams, C. Barry Carter, “Transmission Electron Microscopy”, 2nd ed. Plenum Press, New York, 2009
    98. R. Chang, “Chemistry”, McGraw-Hill, New York, 2004
    99. J.I. Goldstein, “Scanning Electron Microscopy and X-ray Microanalysis”, 3rd ed. Plenum Press, New York, 2003
    100. A. Hirata, T. Hirotsu, T. Ohkubo, N. Takana, and T.G. Nieh, “Local atomic structure of Pd–Ni–P bulk metallic glass examined by high-resolution electron microscopy and electron diffraction”, Intermetallics 14 (2006) 903
    101. M. Shapaan, A. Bárdos , L.K. Varga, J. Lendvai. “Thermal stability and glass forming ability of cast iron–phosphorus amorphous alloys” Mater. Sic. Eng. A 366 (2004) 6
    102. N. Jakse, A. Pasturel, “Local order of liquid and supercooled zirconium by ab initio molecular dynamics”, Phys. Rev. Lett. 291 (003) 195501.
    103. H.M. Tung, J.H. Huang , D.G. Tsai , C.F. Ai , G.P. Yu, “Hardness and residual stress in nanocrystalline ZrN films: Effect of bias voltage and heat treatment”, Mater. Sci. Eng. A 500 (2009) 104
    104. A. Guinier, “X-Ray diffraction in crystals, imperfect crystals and amorphous bodies”, Dover, New York, 1994.
    105. A. Caron, R. Wunderlich, D.V. Louzquine-Luzgin, G. Xie, A. Inoue, and H.J. Fecht, “Influence of minor aluminum concentration changes in zirconium-based bulk metallic glasses on the elastic, anelastic,and plastic properties”, Acta Mater. 58 (2010) 2004
    106. T.C. Hufnagel and S, Brennan, “Short- and medium-range order in (Zr70Cu20Ni10)90-xTaxAl10 bulk amorphous alloys”, Phys. Rev. B 67 (2003) 014203
    107. F.Zeng, Y.Gao, L.Li, D.M. Li, and F. Pan, “Elastic modulus and hardness of Cu–Ta amorphous films”, J. Alloys Compd. 389 (2005) 75.
    108. M.M. Trexler and N.N. Thadhami, “Mechanical properties of bulk metallic glasses”, Prog. Mater. Sci. 55 (2010) 759
    109. F. Attar and T. Johannesson, “Adhesion evaluation of thin ceramic coatings on tool steel using the scratch testing technique”, Surf. Coat. Technol. 78 (1996) 87.
    110. P.J. Burnett and D.S. Rickerby, “The relationship between hardness and scratch adhession” Thin Solid Films 154 (1987) 403.
    111. B.R. Lawn, A.G. Evans, and D.B. Marshall, “Elastic/Plastic Indentation Damage in Ceramics: The Median/Radial Crack System” J. Am. Ceram. Soc. 63 (1980) 574
    112. S. Zhang, D. Sun, Y.Q. Fu and H. Du, “Effect of sputtering target power on microstructure and mechanical properties of nanocomposite nc-TiN/a-SiNx thin films”, Thin Solid Film 447–448 (2004) 462.
    113. D.B. Miracle, D.V. Louzguine-Luzgin, L.V. Louzguina-Luzgina, and A. Inoue, “An assessment of binary metallic glasses-- correlations between structure, glass forming ability and stability”, Int. Mater. Rev. 55 (2010) 218
    114. A.Y. Liu, and M.L. Cohen, “Prediction of New Low Compressibility Solids”, Science 245 (1989) 841
    115. S. Takeuchi and K. Edagawa, “Atomistic simulation and modeling of localized shear deformation in metallic glasses”, Prog. Mater. Sci. 56 (2011) 785
    116. T. Egami, “Atomic level stresses”, Prog. Mater. Sci. 56 (2011) 637
    117. P. Guan, M.W. Chen, and T. Egami, “Stress-Temperature Scaling for Steady-State Flow in Metallic Glasses”, Phys. Rev. Lett 104 (2010) 205701.
    118. Y. Suzuki, J. Haimovich, T. Egami, “Bond-orientational anisotropy in metallic glasses observed by x-ray diffraction”, Phys. Rev. Lett B 35 (1987) 2162
    119. C.N. Kuo, H.M. Chen, X.H. Du, and J.C. Huang, “Flow serrations and fracture morphologies of Cu-based bulk metallic glasses in energy release perspective”, Intermetallics 18 (2010) 1648
    120. J.J. Lewandowski, and A.L. Greer, Nat. Mater. 5 (2006) 15
    121. H.W. Sheng, W.K. Luo, F.M. Alamgir, J.M. Bai, and E. Ma, “Temperature rise at shear bands in metallic glasses”, Nature 439 (2006) 419
    122. W.L. Johnson, M.D. Demetriou, J.S. Harmon, M.L. Lind, and K. Samwer, “Rheology and Ultrasonic Properties of Metallic Glass-Forming Liquids: A Potential Energy Landscape Perspective”, MRS Bull. 32 (2007) 644

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE