研究生: |
張昊 Zhang Hao |
---|---|
論文名稱: |
在基於砷化鎵的光學微共振腔中實現極強耦合 Realization of Very Strong Coupling in GaAs-based optical microcavities |
指導教授: |
那允中
Neil Na |
口試委員: |
張文豪
Wen-Hao Chang 那允中 Neil Na 李瑞光 Ray-Kuang Lee |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2013 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 50 |
中文關鍵詞: | 共振腔 、電磁極化子 、極強耦合 |
外文關鍵詞: | microcavity, polariton, very strong coupling |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
通過優化現有的DBR微共振腔以及設計新的基於GMR的共振腔,我們可以使光子與激子之間的耦合強度高於砷化鎵系統中激子的結合能。此時我們稱該系統進入極強耦合區域,產生的上電磁極化子以及下電磁極化子能量都比強耦合情況下來的低。同時我們發現此時下電磁極化子的解離溫度以及飽和密度邊界都變得更大。因此在常溫下的電磁極化子凝聚變得有可能。這為以後基於這種BEC效應的器件例如量子模擬以及電磁極化子鐳射提供了新的平臺。
By optimizing existed distributed feedback reflector (DBR) microcavities (MCs) or designing new guided mode resonance (GMR) microcavities, we can make the coupling strength between photon and exciton larger than the exciton binding energy in GaAs based system. We call this very strong coupling region in which both upper and lower polariton energy are lower than that in the strong coupling case. Also we show that both the dissociation and saturation boundaries of lower polariton (LP) are much extended, which means condensation of exciton-polaritons is possible at room temperature. It opens the gate for new devices that use the BEC effect such as quantum simulation[1] and polariton laser[2].
1. Deng, H., G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto, Condensation of semiconductor microcavity exciton polaritons. Science, 2002. 298(5591): p. 199-202.
2. Imamog, A., R. Ram, S. Pau, and Y. Yamamoto, Nonequilibrium condensates and lasers without inversion: Exciton-polariton lasers. Physical Review A, 1996. 53(6): p. 4250.
3. Balili, R., V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, Bose-Einstein condensation of microcavity polaritons in a trap. Science, 2007. 316(5827): p. 1007-1010.
4. Kasprzak, J., M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. Keeling, and M. FM Marchetti, Bose–Einstein condensation of exciton polaritons. Nature, 2006. 443(7110): p. 409-414.
5. Amo, A., J. Lefrère, S. Pigeon, C. Adrados, C. Ciuti, I. Carusotto, R. Houdré, E. Giacobino, and A. Bramati, Superfluidity of polaritons in semiconductor microcavities. Nature Physics, 2009. 5(11): p. 805-810.
6. Amo, A., D. Sanvitto, F. Laussy, D. Ballarini, E. Del Valle, M. Martin, A. Lemaitre, J. Bloch, D. Krizhanovskii, and M. Skolnick, Collective fluid dynamics of a polariton condensate in a semiconductor microcavity. Nature, 2009. 457(7227): p. 291-295.
7. Lagoudakis, K.G., M. Wouters, M. Richard, A. Baas, I. Carusotto, R. André, L.S. Dang, and B. Deveaud-Plédran, Quantized vortices in an exciton–polariton condensate. Nature Physics, 2008. 4(9): p. 706-710.
8. Roumpos, G., M.D. Fraser, A. Löffler, S. Höfling, A. Forchel, and Y. Yamamoto, Single vortex-antivortex pair in an exciton-polariton condensate. Nature Physics, 2010. 7(2): p. 129-133.
9. Gérard, J.-M. and B. Gayral, Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities. Lightwave Technology, Journal of, 1999. 17(11): p. 2089-2095.
10. Christmann, G., D. Simeonov, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, Impact of disorder on high quality factor III-V nitride microcavities. Applied physics letters, 2006. 89(26): p. 261101.
11. Bloch, J., T. Freixanet, J.Y. Marzin, V. Thierry-Mieg, and R. Planel, Giant Rabi splitting in a microcavity containing distributed quantum wells. Applied Physics Letters, 1998. 73(12): p. 1694-1696.
12. Citrin, D.S. and J.B. Khurgin, Microcavity effect on the electron-hole relative motion in semiconductor quantum wells. Physical Review B, 2003. 68(20): p. 205325.
13. Khurgin, J., Excitonic radius in the cavity polariton in the regime of very strong coupling. Solid state communications, 2001. 117(5): p. 307-310.
14. Baumberg, J.J., A.V. Kavokin, S. Christopoulos, A.J.D. Grundy, R. Butté, G. Christmann, D.D. Solnyshkov, G. Malpuech, G. Baldassarri Höger von Högersthal, E. Feltin, J.F. Carlin, and N. Grandjean, Spontaneous Polarization Buildup in a Room-Temperature Polariton Laser. Physical Review Letters, 2008. 101(13): p. 136409.
15. Christopoulos, S., G.B.H. von Högersthal, A.J.D. Grundy, P.G. Lagoudakis, A.V. Kavokin, J.J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.F. Carlin, and N. Grandjean, Room-Temperature Polariton Lasing in Semiconductor Microcavities. Physical Review Letters, 2007. 98(12): p. 126405.
16. Zamfirescu, M., A. Kavokin, B. Gil, G. Malpuech, and M. Kaliteevski, ZnO as a material mostly adapted for the realization of room-temperature polariton lasers. Physical Review B, 2002. 65(16): p. 161205.
17. Kéna-Cohen, S. and S. Forrest, Room-temperature polariton lasing in an organic single-crystal microcavity. Nature Photonics, 2010. 4(6): p. 371-375.
18. Houdré, R., R.P. Stanley, U. Oesterle, M. Ilegems, and C. Weisbuch, Room-temperature cavity polaritons in a semiconductor microcavity. Physical Review B, 1994. 49(23): p. 16761-16764.
19. Pratt, A.R., T. Takamori, and T. Kamijoh, Temperature dependence of the cavity-polariton mode splitting in a semiconductor microcavity. Physical Review B, 1998. 58(15): p. 9656-9658.
20. Tsintzos, S.I., P.G. Savvidis, G. Deligeorgis, Z. Hatzopoulos, and N.T. Pelekanos, Room temperature GaAs exciton-polariton light emitting diode. Applied Physics Letters, 2009. 94(7): p. 071109.
21. Anappara, A.A., S. De Liberato, A. Tredicucci, C. Ciuti, G. Biasiol, L. Sorba, and F. Beltram, Signatures of the ultrastrong light-matter coupling regime. Physical Review B, 2009. 79(20): p. 201303.
22. Ciuti, C., G. Bastard, and I. Carusotto, Quantum vacuum properties of the intersubband cavity polariton field. Physical Review B, 2005. 72(11): p. 115303.
23. Günter, G., A.A. Anappara, J. Hees, A. Sell, G. Biasiol, L. Sorba, S. De Liberato, C. Ciuti, A. Tredicucci, and A. Leitenstorfer, Sub-cycle switch-on of ultrastrong light–matter interaction. Nature, 2009. 458(7235): p. 178-181.
24. Na, N., S. Utsunomiya, L. Tian, and Y. Yamamoto, Strongly correlated polaritons in a two-dimensional array of photonic crystal microcavities. Physical Review A, 2008. 77(3): p. 031803.
25. Na, N. and Y. Yamamoto, Massive parallel generation of indistinguishable single photons via the polaritonic superfluid to Mott-insulator quantum phase transition. New Journal of Physics, 2010. 12(12): p. 123001.
26. Azzini, S., D. Gerace, M. Galli, I. Sagnes, R. Braive, A. Lemaître, J. Bloch, and D. Bajoni, Ultra-low threshold polariton lasing in photonic crystal cavities. Applied Physics Letters, 2011. 99(11): p. 111106.
27. Bajoni, D., E. Peter, P. Senellart, J.L. Smirr, I. Sagnes, A. Lemaître, and J. Bloch, Polariton parametric luminescence in a single micropillar. Applied Physics Letters, 2007. 90(5): p. 051107.
28. El Daïf, O., A. Baas, T. Guillet, J.-P. Brantut, R.I. Kaitouni, J.L. Staehli, F. Morier-Genoud, and B. Deveaud, Polariton quantum boxes in semiconductor microcavities. Applied Physics Letters, 2006. 88(6): p. 061105.
29. Symonds, C., A. Lemaître, E. Homeyer, J.C. Plenet, and J. Bellessa, Emission of Tamm plasmon/exciton polaritons. Applied Physics Letters, 2009. 95(15): p. 151114.
30. Andreani, L.C. and A. Pasquarello, Accurate theory of excitons in GaAs-Ga_{1-x}Al_{x}As quantum wells. Physical Review B, 1990. 42(14): p. 8928-8938.
31. Fan, S. and J.D. Joannopoulos, Analysis of guided resonances in photonic crystal slabs. Physical Review B, 2002. 65(23): p. 235112.
32. Huang, M.C., Y. Zhou, and C.J. Chang-Hasnain, A surface-emitting laser incorporating a high-index-contrast subwavelength grating. Nature Photonics, 2007. 1(2): p. 119-122.
33. Wang, S., R. Magnusson, J.S. Bagby, and M. Moharam, Guided-mode resonances in planar dielectric-layer diffraction gratings. JOSA A, 1990. 7(8): p. 1470-1474.
34. Willner, A.E., Lasers: All mirrors are not created equal. Nature Photonics, 2007. 1(2): p. 87-88.
35. Yee, K., Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. Antennas and Propagation, IEEE Transactions on, 1966. 14(3): p. 302-307.
36. Malpuech, G., A. Di Carlo, A. Kavokin, J.J. Baumberg, M. Zamfirescu, and P. Lugli, Room-temperature polariton lasers based on GaN microcavities. Applied Physics Letters, 2002. 81(3): p. 412-414.
37. Schmitt-Rink, S., D.S. Chemla, and D.A.B. Miller, Theory of transient excitonic optical nonlinearities in semiconductor quantum-well structures. Physical Review B, 1985. 32(10): p. 6601-6609.
38. Fattal, D., J. Li, Z. Peng, M. Fiorentino, and R.G. Beausoleil, Flat dielectric grating reflectors with focusing abilities. Nature photonics, 2010. 4(7): p. 466-470.
39. Fan, S. and J. Joannopoulos, Analysis of guided resonances in photonic crystal slabs. Physical Review B, 2002. 65(23): p. 235112.