簡易檢索 / 詳目顯示

研究生: 林育民
Yu-Min Lin
論文名稱: 小波轉換理論利用中位數的方法使用在具備週期邊界條件的耦合混沌系統及其同步化應用
Median Approach to the Wavelet Transform Method for the Coupled Chaotic System with Periodic Boundary Conditions and its Synchronous Applications
指導教授: 李金龍
Chin-Lung Li
口試委員:
學位類別: 碩士
Master
系所名稱: 南大校區系所調整院務中心 - 應用數學系所
應用數學系所(English)
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 21
中文關鍵詞: 小波轉換中位數同步耦合混沌系統
外文關鍵詞: Wavelet transform, Median, Synchronous, Coupled, Chaotic system
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用小波轉換理論使網絡型耦合混沌系統更快地產生同步化現象,當耦合強度比臨界耦合強度還要大時,此耦合混沌系統即會產生同步化現象。而臨界耦合強度跟矩陣A的第二大特徵值有關。此篇論文包含兩個部分,第一、改進傳統的小波轉換方理論,將平均數的方法利用中位數方法取代,來改變小波參數為最佳選擇建議。第二、我們如何給予一個最適合的方法在週期邊界條件的耦合混沌系統使其為同步化之應用.


    Based on the master stability function (MSF) [7] for local synchronization in coupled chaotic systems, the stability of chaotic synchronization is actually controlled by the second largest eigenvalue of the coupling matrix of coupled chaotic systems. In addition, it is demonstrated that the wavelet transform method,which is proposed by Wei et al.[11], can greatly increase the applicable ranges of coupling strengths for local synchronization of coupled chaotic systems. There are two-fold in this research. First, the concept of the wavelet transform method by using median to improve the best choice of wavelet parameters is proposed. Second, we give an application to the individual chaotic system diffusively coupled with Periodic boundary conditions.

    1 Introduction 1 2 Preliminary 5 3 Di usively coupled with Periodic Boundary Conditions 9 4 Numerical Results for Di usively Coupled with Periodic Boundary Conditions 16 5 Conclusions 17

    [1] Ashwin, P., "Synchronization from chaos," Nature(London) 422, 384-385 (2003).
    [2] Daubechies, I., Ten Lectures on Wavelets, CBMS-NSF Series in Applied Mathematics (SIAM, Philadelphia, 1992).
    [3] Davis, P. J., Circulant Matrices (Wiley, New York,1979).
    [4] Guan, S., Lai C. H., and Wei, G. W., "A wavelet method for the characterization of spatiotemporal patterns," Physica D 163, 49-79 (2002).
    [5] Motter, A. E., Zhou, C. S., and Kurths, J., "Enhancing complex-network synchronization," Europhys. Lett. 69, 334-340 (2005).
    [6] Ott, E., Grebogi, C., and York, J. A., "Controlling chaos," Phys. Rev. Lett. 64, 1196-1199 (1999).
    [7] Pecora, L. M. and Carroll T. L., "Master stability functions for synchronized coupled systems," Phys. Rev. Lett. 80, 2109-2122 (1998).
    [8] Pecora, L. M. and Carroll, T. L., "Synchronization in chaotic systems," Phys. Rev. Lett. 64, 821-824 (1990).
    [9] Shieh, S. F., Wei, G. W., Wang, Y. Q., and Lai, C.-H., "Mathematical proof for wavelet method of chaos control," J. Math. Phys. (to be published).
    [10] Wei, G. W., "Synchronization of single-side locally averaged adaptive coupling and its application to shock capturing," Phys. Rev. Lett. 86, 3542-3545 (2001).
    [11] Wei, G. W., Zhan, M., and Lai, C.-H., "Tailoring wavelets for chaos control," Phys. Rev. Lett. 89, 284103 (2002).
    [12] Wu. C. W., Perturbation of coupling matrices and its effect on the synchronizability in arrays of coupled chaotic systems," Phys. Lett. A 319, 495-503 (2003).
    [13] Yang, J., Hu, G., and Xiao, J., "Chaos synchronization in coupled chaotic oscillators with multiple positive Lyapunov exponents," Phys. Rev. Lett. 80, 496-499 (1998).
    [14] Zhan, M., Wang, X. G., and Gong, X. F., "Complete synchronization and generalized synchronization of one-way coupled time-delay systems," Phys. Rev. E 68(3), 036208 (2003).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE