研究生: |
謝官宇 Hsieh, Kuan-Yu |
---|---|
論文名稱: |
以薄膜擠壓效應為基礎之電容式高感測度CMOS微機電壓力感測器開發 Development of Squeeze-film Based CMOS MEMS Capacitive Pressure Sensors with High Sensitivity |
指導教授: |
盧向成
Lu, Shiang-Cheng |
口試委員: |
羅丞曜
Lo, Cheng-Yao 劉承賢 Liu, Cheng-Hsien |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 64 |
中文關鍵詞: | 薄膜擠壓阻尼效應 、壓力感測器 、靜電式驅動 、電容式感測 |
外文關鍵詞: | Squeeze-film damping effect, Pressure sensor, Capacitive drive, Capacitive sensing |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用薄膜擠壓效應(Squeeze-film damping effect)之特性,在CMOS製程中成功做出一壓力感測器,在此效應中,透過兩平板間高頻振動所產生之空氣彈簧力來感測氣壓變化,由於此空氣彈簧力會隨著氣壓改變,從而改變結構之共振頻,故可透過頻率的改變來得知氣壓變化。
文中之感測器晶片使用TSMC 2P4M 0.35 μm CMOS製程,並利用後製程來做出震動結構,結構分為兩個電極,分別用於靜電式驅動以及電容式感測。並將氣壓計結構與感測電路整合於一晶片上,晶片總面積為1 mm × 1 mm。不同於傳統氣壓感測器,其不需製作封閉式的空腔而簡化製程,晶片經過硫酸濕蝕刻、反應離子蝕刻製程等後製程釋放結構,形成厚度為1.925 μm之振動結構。
本研究設計三種同面積、不同彈力係數的壓力感測器,討論與比較了三種彈力係數之優缺點,並且成功量測每個結構對於氣壓的感測度,與模擬做分析比較,得到相似的結果。舉其中一感測元件為例,其模擬感測度能達到5.63 Hz/Pa,量測結果為5.26 Hz/Pa。
In this thesis, a pressure sensor operated based on the squeeze-film damping effect is successfully designed and fabricated in the CMOS process. Based on this effect, the elastic force generated by the squeezed gas due to high-frequency vibration between the two plates varies in accordance with the change in the air pressure, thereby changing the resonance frequency of the structure. The change of the frequency can be used to detect the change in the air pressure.
The sensor is fabricated using the TSMC 2P4M 0.35-μm CMOS process and released by post process. The structures contain separated electrodes for capacitive driving and sensing with readout circuits integrated on the chip, which has a size of 1 mm × 1 mm. Compared to the traditional air pressure sensors, the fabrication is simplified since our devices do not need a sealed cavity. The structure with a thickness of 1.925 μm is released by metal wet etch using sulfuric acid.
In this study, three pressure sensors with the same plate area but different spring constants were designed, and their sensing performances were discussed and compared with simulation. One of the sensors achieves a sensitivity of 5.26 Hz/Pa as compared to the simulated sensitivity of 5.63 Hz/Pa.
[1] J. M. Bustillo, R. T. Howe, and R. S. Muller, “Surface micromachining for microelectromechanical systems,” Proc. IEEE, vol. 86, pp. 1552-1574, 1998.
[2] J. H. Smith, S. Montague, J. J. Sniegowski, J. R. Murray, et al., “Embedded micromechanical devices for the monolithic integration of MEMS with CMOS,” in Proc. Int. Electron Devices Meeting, Washington, pp. 609–612, 1995.
[3] W. Thomson, ‘‘On the electro-dynamic qualities of metals: Effects of magnetization on the electric conductivity of nickel and of iron,’’ Proc. R. Soc. London, vol. 8, pp. 546–550, 1856.
[4] A. E. Kubba, A. Hasson, A. I. Kubba, and G. Hall, “A micro-capacitive pressure sensor design and modelling,” Journal of Sensors and Sensor Systems, vol. 5, pp. 95-112, 2016.
[5] O. Hussein, Hasan W.Z.W., Jafaar, A. C. S. H., “Investigation on Touch Area of Under Foot Pressure Based-on Weight Measurements,” In 7th International Conference on Engineering and Technology ICET, 2015.
[6] Y. Wahab, A. Zayegh, R. Veljanovski and R. K. Begg, “Sensitivity optimization of a foot plantar pressure microsensor,” IEEE Int. Conf. Microelectronics, pp. 131-134, 2008.
[7] K. E. Petersen, ‘‘Silicon as a mechanical material,’’ Proc. IEEE, vol. 70, pp. 420–457, 1982.
[8] K. D. Wise, ‘‘Integrated sensors, MEMS, and microsystems: Reflections on a fantastic voyage,’’ Sens. Actuators, A, vol. 136, pp. 39–50, 2007.
[9] Bao, M. H.: Micro mechanical transducers: pressure sensors, accelerometers, and gyroscopes, Elsevier, Amsterdam, the Netherlands, 2000.
[10] K. A. Ahmad, M. F. A. Rahman, R. Boudville, A. A. Manaf, N. Abdullah, “Design of Piezoelectric based Pressure Sensors for Gait Rehabilitations using D33 Mode Polarization,” In 12th International Conference on Sensing Technology (ICST), pp. 149-153, 2018.
[11] H. Tomlinson, ‘‘On the increase in resistance to the passage of an electric current produced on wires by stretching,’’ Proc. R. Soc. London, vol. 25, pp. 451–453, 1876.
[12] H. Tomlinson, ‘‘The influence of stress and strain on the action of physical forces,’’ Philos. Trans. R. Soc. London, vol. 174, pp. 1–172, 1883.
[13] J. C. Sanchez, “Semiconductor strain-gage pressure sensors,” Instruments and Control Systems, vol. 20, pp. 63-65, 1963.
[14] A. C. M. Gieles, G.H. J. Somers, “Miniature pressure transducers with a silicon diaphragm,” Philips technical review, vol. 33, pp. 14-20, 1973.
[15] J. B. Lasky, S. R. Stiffler, F. R. White and J. R. Abernathy, “Silicon-on-insulator (SOI) by bonding and etch-back,” International Electron Devices Meeting (IEDM), vol. 7, pp. 684-687, 1985.
[16] V.MosserJ.SuskiJ.GossE.Obermeier, “Piezoresistive pressure sensors based on polycrystalline silicon,” Sens. Actuators, A, vol. 28, pp. 113-132,1991.
[17] H. San, H. Zhang, Q. Zhang, Y. Yu, and X. Chen, “Silicon–glass-based single piezoresistive pressure sensors for harsh environment applications,” Journal of Micromechanics and Microengineering, vol. 23, pp. 1-8, 2013.
[18] S. E. Zhu, M. K. Ghatkesar, C. Zhang, and G. C. A. M. Janssen, “Graphene based piezoresistive pressure sensor,” Applied Physics Letters, vol. 102, pp. 1-3, 2013.
[19] C. S. Sander, J. W. Knutti, James D. Meindl, “A monolithic capacitive pressure Sensor with Pulse-Period Output,” IEEE Transactions on Electron Devies, vol. 27, pp. 927-930, 1980.
[20] J. B. Lasky, S. R. Stiffler, F. R. White and J. R. Abernathy, “Silicon-on-insulator (SOI) by bonding and etch-back,” International Electron Devices Meeting (IEDM), vol. 7, pp. 684-687, 1985.
[21] O. Akar, T. Akin, K. Najafi, “A wireless batch sealed absolute capacitive pressure sensor,” Sens. Actuators, A,vol. 95, pp. 29-38, 2001.
[22] Frank, R.: Understanding smart sensors, Artech House, Norwood, MA, USA, 2000.
[23] Hsu,T.-R.: MEMS & Microsystems: Design, Manufacture, and Nanoscale Engineering, John Wiley & Sons Inc., Hoboken, NJ, USA, 2008.
[24] K. E. Petersen, F. Pourahmadi, J. Brown, M. Skinner and J. Tudor, “Resonant beam pressure sensor with silicon fusion bonding,” Sens. Actuators, vol. 7, pp. 664-667, 1991.
[25] D. W. Burns, D. J. Zook, R. D. Horning, W. R. Herb, and H. Guckel, “A digital pressure sensor based on resonant microbeams,” Solid-State Sensor and Actuator Workshop, vol. 4, pp. 221-224, 1994.
[26] J. D. Zook, and D. W. Burns, “Characteristics of polysilicon resonant microbeams,” Sens. Actuators, A, vol. 35, pp. 51-59, 1992.
[27] C. J. Welham, J. W. Gardner, and J. Greenwood, “A laterally driven micro machined resonant pressure sensor,” Sens. Actuators, A, vol.52, pp. 86-91, 1996.
[28] L. Kumar, K. Reimann, M. J. Goossens, W. F. A. Besling, R. J. Dolleman, R. H. W. Pijnenburg, C. V. D. Avoort, L. P. M. Sarro, P. G. Steeneken, “MEMS oscillating squeeze-film pressure sensor with optoelectronic feedback,” J. Micromech. Microeng. vol .25, pp. 1-10, 2015.
[29] C. S. Sander, J. W. Knutti and J. D. Meindl, “A monolithic capacitive pressure sensor with pulse-period output,” IEEE Trans. Elec. Dev., vol. 27, pp. 927–930, 1980.
[30] W. S. Griffin, H. H. Richardson and S. Yamanami, “A study of fluid squeeze-film damping,” ASME J. Basic Eng., pp. 451–456, 1966.
[31] J. J. Blech, “On isothermal squeeze films,” J. Lubrication Tech., vol. 105, pp. 615–620, 1983.
[32] T. Veijola, H. Kuisma, J. Lahdenperä and T. Ryhänen, “Equivalent-circuit model of the squeezed gas film in a silicon accelerometer,” Sens. Actuators, A, Phys, vol. 48, pp. 239–248, 1995.
[33] M. Andrews, I. Harm, and G. Turner, “A comparison of squeeze-film theory with measurements on a microstructure,” Sens. Actuators, A, vol. 36, pp. 79-87, 1993.
[34] M. K. Andrews, G. C. Turner, P. D. Harris, and I. M. Harris, “A resonant pressure sensor based on a squeezed film of gas,” Sens. Actuators, A, vol. 36, pp. 219-226, 1993.
[35] V. Godthi, J. Reddy, and R. Pratap, “A study of pressure-dependent squeeze film stiffness as a resonance modulator using static and dynamic measurements,” Journal of Microelectromechanical Systems, vol. 24, pp. 1712-1719, 2015.
[36] G. D. Pasquale, T. Veijola, and A. Soma, “Modelling and validation of air damping in perforated gold and silicon MEMS plates,” J.Micromech.Microeng, vol. 20, pp. 1-12, 2010.
[37] M. Bao, and H. Yang, “Squeeze film air damping in MEMS,” Sens. Actuators, A, vol. 136, pp. 3-27, 2007.
[38] I. B. Crandall, “The air damped vibrating system: Theoretical calibration of the condenser transmitter,” Physics Review 11, pp. 449-460, 1917.
[39] S. S. Rao: Vibration of continuous systems,John Wiley & Sons, 2007.