研究生: |
陳欣瑜 Shin-Yu Chen |
---|---|
論文名稱: |
克雷白氏肺炎桿菌第三型線毛主要單元體MrkA─參與線毛堆疊之重要胺基酸分析以及線毛的疫苗呈現系統之建構 MrkA, the major pilin of Klebsiella pneumoniae type 3 fimbriae - Identification of the important residues involved in pilus assembly and construction of a vaccine display system |
指導教授: |
張晃猷
Hwan-You Chang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 52 |
中文關鍵詞: | 第三型線毛 、克雷白氏肺炎桿菌 、疫苗呈現系統 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
克雷白氏肺炎桿菌所表現的第三型線毛在細菌進行感染時扮演黏附宿主細胞的重要角色,同時也是引起宿主體內強大免疫反應的結構之ㄧ。目前已知此多分子聚合而成的胞器,主要經由chaperone-usher pathway組裝而成。為了找出線毛單元體上參與線毛組裝堆疊的重要胺基酸,我們於MrkA單元體上不同位置進行定點突變,並測試其組裝成線毛的能力。結果顯示位於MrkA中段的Ile-82與
Cys-87,可能分別參與了MrkA單元體之間的交互作用以及維持MrkA結構之雙硫鍵的形成,因此在線毛堆疊上扮演了非常重要的角色。另外在MrkA的N端與C端也發現了六個胺基酸, Val-32, Phe-34, Asp-40, Val-45, Gly-189及Tyr-201, 在置換成丙胺酸後破壞了第三型線毛原有的功能,因此在線毛結構的維持上亦具有一定的重要性。本研究的另一個目的為建構第三型線毛作為疫苗呈現的系統。實驗室之前建構了4株插入突變株,分別於MrkA的不同位置插入含有18個胺基酸的豬內源反轉錄病毒(PERV)外套膜抗原決定位。我們確認其線毛的表現與抗原決定位的呈現效率之後,將其中一株突變株D27-E的線毛純化並進行抗原性測試。最後證實了此重組線毛可成功地於老鼠體內產生針對PERV外套膜蛋白的抗體。本研究顯示了第三型線毛呈現抗原決定位的潛力,在未來的疫苗製作上具有很大的發展性。
Type 3 fimbriae produced by Klebsiella pneumoniae are required for initiating infection by attaching to host tissues and responsible to the strong immunogenicity of bacteria. This macromolecular organelle is assembled via the chaperone-usher pathway. The first aim of this study is to identify residues in the major pilin MrkA important for pilus assembly. Site-directed mutagenesis was performed on MrkA and whether the MrkA of these mutants can be assembled into fimbriae were evaluated. The data showed that two amino acids at the middle region of MrkA, Ile-82 and Cys-87, play critical roles in pilus assembly. Six amino acids in the N- and C- terminal regions of MrkA, including Val-32, Phe-34, Asp-40, Val-45, Gly-189 and Tyr-201, disrupt normal pilus functions and may relate to maintaining stability of pilus structures. The second aim of this study is to construct a vaccine displaying fimbriae. Previously, our lab had created 4 insertion mutants containing 18-amino-acid porcine endogenous retrovirus (PERV) envelop epitopes inserted in 4 different positions of MrkA respectively. After confirming the fimbriation and epitope display efficiencies of these mutants, the fimbriae of one mutant strain, D27-E, was purified. Immunization of mice with the purified recombinant fimbriae successfully elicited antibodies that specifically recognized PERV envelope protein, revealing the potential of type 3 fimbriae as vaccine display systems.
Allen, B.L., Gerlach, G.F., and Clegg, S. (1991) Nucleotide sequence and functions of mrk determinants necessary for expression of type 3 fimbriae in Klebsiella pneumoniae. J Bacteriol 173: 916-920.
Bakker, D., van Zijderveld, F.G., van der Veen, S., Oudega, B., and de Graaf, F.K. (1990) K88 fimbriae as carriers of heterologous antigenic determinants. Microb Pathog 8: 343-352.
Bullitt, E., Jones, C.H., Striker, R., Soto, G., Jacob-Dubuisson, F., Pinkner, J., Wick, M.J., Makowski, L., and Hultgren, S.J. (1996) Development of pilus organelle subassemblies in vitro depends on chaperone uncapping of a beta zipper. Proc Natl Acad Sci U S A 93: 12890-12895.
Chiang, C.Y., Pan, Y.R., Chou, L.F., Fang, C.Y., Wang, S.R., Yang, C.Y., and Chang, H.Y. (2007) Functional epitopes on porcine endogenous retrovirus envelope protein interacting with neutralizing antibody combining sites. Virology 361: 364-371.
Choudhury, D., Thompson, A., Stojanoff, V., Langermann, S., Pinkner, J., Hultgren, S.J., and Knight, S.D. (1999) X-ray structure of the FimC-FimH chaperone-adhesin complex from uropathogenic Escherichia coli. Science 285: 1061-1066.
Duncan, M.J., Mann, E.L., Cohen, M.S., Ofek, I., Sharon, N., and Abraham, S.N. (2005) The distinct binding specificities exhibited by enterobacterial type 1 fimbriae are determined by their fimbrial shafts. J Biol Chem 280: 37707-37716.
Garnier, J., Gibrat, J.F., and Robson, B. (1996) GOR method for predicting protein secondary structure from amino acid sequence. Methods Enzymol 266: 540-553.
Georgiou, G., Stathopoulos, C., Daugherty, P.S., Nayak, A.R., Iverson, B.L., and Curtiss, R., 3rd (1997) Display of heterologous proteins on the surface of microorganisms: from the screening of combinatorial libraries to live recombinant vaccines. Nat Biotechnol 15: 29-34.
Gerlach, G.F., Allen, B.L., and Clegg, S. (1988) Molecular characterization of the type 3 (MR/K) fimbriae of Klebsiella pneumoniae. J Bacteriol 170: 3547-3553.
Gerlach, G.F., Allen, B.L., and Clegg, S. (1989a) Type 3 fimbriae among enterobacteria and the ability of spermidine to inhibit MR/K hemagglutination. Infect Immun 57: 219-224.
Gerlach, G.F., Clegg, S., and Allen, B.L. (1989b) Identification and characterization of the genes encoding the type 3 and type 1 fimbrial adhesins of Klebsiella pneumoniae. J Bacteriol 171: 1262-1270.
Hedegaard, L., and Klemm, P. (1989) Type 1 fimbriae of Escherichia coli as carriers of heterologous antigenic sequences. Gene 85: 115-124.
Hornick, D.B., Thommandru, J., Smits, W., and Clegg, S. (1995) Adherence properties of an mrkD-negative mutant of Klebsiella pneumoniae. Infect Immun 63: 2026-2032.
Hsu, H.Y., (2007) MrkA, the major pilin of Klebsiella pneumoniae type 3 fimbriae─identification of critical regions for the fimbriae assembly and dispensable regions for display system development. National Tsing-Hua University Master Dissertation.
Huang, Y.J., Wu, C.C., Chen, M.C., Fung, C.P., and Peng, H.L. (2006) Characterization of the type 3 fimbriae with different MrkD adhesins: possible role of the MrkD containing an RGD motif. Biochem Biophys Res Commun 350: 537-542.
Hultgren, S.J., Normark, S., and Abraham, S.N. (1991) Chaperone-assisted assembly and molecular architecture of adhesive pili. Annu Rev Microbiol 45: 383-415.
Hultgren, S.J., Abraham, S., Caparon, M., Falk, P., St Geme, J.W., 3rd, and Normark, S. (1993) Pilus and nonpilus bacterial adhesins: assembly and function in cell recognition. Cell 73: 887-901.
Jacob-Dubuisson, F., Pinkner, J., Xu, Z., Striker, R., Padmanhaban, A., and Hultgren, S.J. (1994) PapD chaperone function in pilus biogenesis depends on oxidant and chaperone-like activities of DsbA. Proc Natl Acad Sci U S A 91: 11552-11556.
Jagnow, J., and Clegg, S. (2003) Klebsiella pneumoniae MrkD-mediated biofilm formation on extracellular matrix- and collagen-coated surfaces. Microbiology 149: 2397-2405.
Jones, C.H., Pinkner, J.S., Roth, R., Heuser, J., Nicholes, A.V., Abraham, S.N., and Hultgren, S.J. (1995) FimH adhesin of type 1 pili is assembled into a fibrillar tip structure in the Enterobacteriaceae. Proc Natl Acad Sci U S A 92: 2081-2085.
Kil, K.S., Darouiche, R.O., Hull, R.A., Mansouri, M.D., and Musher, D.M. (1997) Identification of a Klebsiella pneumoniae strain associated with nosocomial urinary tract infection. J Clin Microbiol 35: 2370-2374.
Klemm, P., and Schembri, M.A. (2000) Fimbrial surface display systems in bacteria: from vaccines to random libraries. Microbiology 146 Pt 12: 3025-3032.
Kuehn, M.J., Ogg, D.J., Kihlberg, J., Slonim, L.N., Flemmer, K., Bergfors, T., and Hultgren, S.J. (1993) Structural basis of pilus subunit recognition by the PapD chaperone. Science 262: 1234-1241.
Lederman, E.R., and Crum, N.F. (2005) Pyogenic liver abscess with a focus on Klebsiella pneumoniae as a primary pathogen: an emerging disease with unique clinical characteristics. Am J Gastroenterol 100: 322-331.
Lindberg, F., Tennent, J.M., Hultgren, S.J., Lund, B., and Normark, S. (1989) PapD, a periplasmic transport protein in P-pilus biogenesis. J Bacteriol 171: 6052-6058.
Nassif, X., and Sansonetti, P.J. (1986) Correlation of the virulence of Klebsiella pneumoniae K1 and K2 with the presence of a plasmid encoding aerobactin. Infect Immun 54: 603-608.
Podschun, R., and Ullmann, U. (1998) Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev 11: 589-603.
Pugsley, A.P. (1993) The complete general secretory pathway in gram-negative bacteria. Microbiol Rev 57: 50-108.
Sauer, F.G., Futterer, K., Pinkner, J.S., Dodson, K.W., Hultgren, S.J., and Waksman, G. (1999) Structural basis of chaperone function and pilus biogenesis. Science 285: 1058-1061.
Sauer, F.G., Barnhart, M., Choudhury, D., Knight, S.D., Waksman, G., and Hultgren, S.J. (2000) Chaperone-assisted pilus assembly and bacterial attachment. Curr Opin Struct Biol 10: 548-556.
Simoons-Smit, A.M., Verweij-van Vught, A.M., and MacLaren, D.M. (1986) The role of K antigens as virulence factors in Klebsiella. J Med Microbiol 21: 133-137.
Sokurenko, E.V., Courtney, H.S., Ohman, D.E., Klemm, P., and Hasty, D.L. (1994) FimH family of type 1 fimbrial adhesins: functional heterogeneity due to minor sequence variations among fimH genes. J Bacteriol 176: 748-755.
Soto, G.E., Dodson, K.W., Ogg, D., Liu, C., Heuser, J., Knight, S., Kihlberg, J., Jones, C.H., and Hultgren, S.J. (1998) Periplasmic chaperone recognition motif of subunits mediates quaternary interactions in the pilus. Embo J 17: 6155-6167.
Soto, G.E., and Hultgren, S.J. (1999) Bacterial adhesins: common themes and variations in architecture and assembly. J Bacteriol 181: 1059-1071.
Starks, A.M., Froehlich, B.J., Jones, T.N., and Scott, J.R. (2006) Assembly of CS1 pili: the role of specific residues of the major pilin, CooA. J Bacteriol 188: 231-239.
Striker, R., Jacob-Dubuisson, F., Freiden, C., and Hultgren, S.J. (1994) Stable fiber-forming and nonfiber-forming chaperone-subunit complexes in pilus biogenesis. J Biol Chem 269: 12233-12239.
Tarkkanen, A.M., Virkola, R., Clegg, S., and Korhonen, T.K. (1997) Binding of the type 3 fimbriae of Klebsiella pneumoniae to human endothelial and urinary bladder cells. Infect Immun 65: 1546-1549.
Thanassi, D.G., Saulino, E.T., and Hultgren, S.J. (1998) The chaperone/usher pathway: a major terminal branch of the general secretory pathway. Curr Opin Microbiol 1: 223-231.
Van Die, I., Wauben, M., Van Megen, I., Bergmans, H., Riegman, N., Hoekstra, W., Pouwels, P., and Enger-Valk, B. (1988) Genetic manipulation of major P-fimbrial subunits and consequences for formation of fimbriae. J Bacteriol 170: 5870-5876.