簡易檢索 / 詳目顯示

研究生: 陳欣瑜
Shin-Yu Chen
論文名稱: 克雷白氏肺炎桿菌第三型線毛主要單元體MrkA─參與線毛堆疊之重要胺基酸分析以及線毛的疫苗呈現系統之建構
MrkA, the major pilin of Klebsiella pneumoniae type 3 fimbriae - Identification of the important residues involved in pilus assembly and construction of a vaccine display system
指導教授: 張晃猷
Hwan-You Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 52
中文關鍵詞: 第三型線毛克雷白氏肺炎桿菌疫苗呈現系統
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 克雷白氏肺炎桿菌所表現的第三型線毛在細菌進行感染時扮演黏附宿主細胞的重要角色,同時也是引起宿主體內強大免疫反應的結構之ㄧ。目前已知此多分子聚合而成的胞器,主要經由chaperone-usher pathway組裝而成。為了找出線毛單元體上參與線毛組裝堆疊的重要胺基酸,我們於MrkA單元體上不同位置進行定點突變,並測試其組裝成線毛的能力。結果顯示位於MrkA中段的Ile-82與
    Cys-87,可能分別參與了MrkA單元體之間的交互作用以及維持MrkA結構之雙硫鍵的形成,因此在線毛堆疊上扮演了非常重要的角色。另外在MrkA的N端與C端也發現了六個胺基酸, Val-32, Phe-34, Asp-40, Val-45, Gly-189及Tyr-201, 在置換成丙胺酸後破壞了第三型線毛原有的功能,因此在線毛結構的維持上亦具有一定的重要性。本研究的另一個目的為建構第三型線毛作為疫苗呈現的系統。實驗室之前建構了4株插入突變株,分別於MrkA的不同位置插入含有18個胺基酸的豬內源反轉錄病毒(PERV)外套膜抗原決定位。我們確認其線毛的表現與抗原決定位的呈現效率之後,將其中一株突變株D27-E的線毛純化並進行抗原性測試。最後證實了此重組線毛可成功地於老鼠體內產生針對PERV外套膜蛋白的抗體。本研究顯示了第三型線毛呈現抗原決定位的潛力,在未來的疫苗製作上具有很大的發展性。


    Type 3 fimbriae produced by Klebsiella pneumoniae are required for initiating infection by attaching to host tissues and responsible to the strong immunogenicity of bacteria. This macromolecular organelle is assembled via the chaperone-usher pathway. The first aim of this study is to identify residues in the major pilin MrkA important for pilus assembly. Site-directed mutagenesis was performed on MrkA and whether the MrkA of these mutants can be assembled into fimbriae were evaluated. The data showed that two amino acids at the middle region of MrkA, Ile-82 and Cys-87, play critical roles in pilus assembly. Six amino acids in the N- and C- terminal regions of MrkA, including Val-32, Phe-34, Asp-40, Val-45, Gly-189 and Tyr-201, disrupt normal pilus functions and may relate to maintaining stability of pilus structures. The second aim of this study is to construct a vaccine displaying fimbriae. Previously, our lab had created 4 insertion mutants containing 18-amino-acid porcine endogenous retrovirus (PERV) envelop epitopes inserted in 4 different positions of MrkA respectively. After confirming the fimbriation and epitope display efficiencies of these mutants, the fimbriae of one mutant strain, D27-E, was purified. Immunization of mice with the purified recombinant fimbriae successfully elicited antibodies that specifically recognized PERV envelope protein, revealing the potential of type 3 fimbriae as vaccine display systems.

    目錄 Abstract............................................................................................................................ i 中文摘要......................................................................................................................... ii 致謝................................................................................................................................. iii 目錄................................................................................................................................. v 表目錄…………………………………………………………………………………. vii 圖目錄…………………………………………………………………………………. viii 縮寫................................................................................................................................. ix 前言................................................................................................................................. 1 實驗材料與方法............................................................................................................. 6 1. 菌株、質體與培養條件.................................................................................. 6 2. MrkA的定點突變........................................................................................... 6 3. 免疫螢光染色................................................................................................. 6 4. SDS-PAGE與西方墨漬法 ............................................................................ 7 5. 血球凝集測試................................................................................................. 8 6. 生物膜形成能力測試..................................................................................... 9 7. 測定菌液之動力黏度..................................................................................... 9 8. 穿透式電子顯微鏡的觀察............................................................................. 9 9. 第三型線毛的純化......................................................................................... 10 10. PERV外套膜重組蛋白之純化....................................................................... 10 11. 測試重組線毛於老鼠體內造成的免疫反應................................................. 11 結果................................................................................................................................. 12 第一部份………………………………………………………………………… 12 1. 點突變與實驗設計......................................................................................... 12 2. 觀察點突變株第三型線毛生成的情形......................................................... 13 3. 西方墨漬法觀察突變株MrkA單元體之間形成聚合體的能力................... 13 4. 測定MrkA不同點突變對於線毛凝集紅血球能力的影響........................... 14 5. 測定MrkA不同點突變對於生物膜形成能力的影響................................... 15 6. 菌液黏度測試................................................................................................. 15 第二部分…………………………………………………………………………... 15 1. 觀察菌株於MrkA插入PERV外套膜抗原決定位後之線毛表現................ 16 2. 觀察插入突變株是否可將PERV外套膜抗原決定位有效表現於線毛外.. 16 3. 測定重組線毛在老鼠體內所產生對抗PERV外套膜蛋白的免疫反應...... 16 討論................................................................................................................................. 18 第一部份…………………………………………………………………………... 18 第二部份…………………………………………………………………………... 23 參考文獻......................................................................................................................... 25 表目錄 表一:本實驗使用的菌株與質體…………………………………………………… 29 表二:點突變所使用的引子…………………………………………………………... 31 表三:紅血球凝集測試………………………………………………………………... 32 表四:突變株線毛表現能力與MrkA形成聚合體能力比較………………………… 33 表五:點突變株的功能性試驗總整理與分類………………………………………... 34 圖目錄 圖一:第三型線毛的組裝機制………………………………………………………... 35 圖二:MrkA與其他Chaperone-usher pathway 線毛單元體的胺基酸序列比較........ 36 圖三:19株點突變株的電子顯微鏡照片………………………................................... 37 圖四:點突變株的免疫螢光染色測試………………………………………………... 42 圖五:利用西方墨漬法觀察突變株細胞中MrkA聚合體的存在……….…………... 45 圖六:點突變株的血球凝集能力測試………………………………………………... 46 圖七:點突變株之生物膜形成能力測試……………………………………………... 47 圖八;點突變株之菌液黏度測試……………………………………………………... 48 圖九:測試帶有PERV外套膜抗原決定位的插入突變株之線毛表現……………... 49 圖十:插入突變株將PERV外套膜抗原決定位呈現在細菌表面的觀察…………… 50 圖十一:插入突變株D27-E的電子顯微鏡照片……………………………………... 51 圖十二:測試重組線毛於老鼠體內引起的免疫反應……………………………… 52

    Allen, B.L., Gerlach, G.F., and Clegg, S. (1991) Nucleotide sequence and functions of mrk determinants necessary for expression of type 3 fimbriae in Klebsiella pneumoniae. J Bacteriol 173: 916-920.
    Bakker, D., van Zijderveld, F.G., van der Veen, S., Oudega, B., and de Graaf, F.K. (1990) K88 fimbriae as carriers of heterologous antigenic determinants. Microb Pathog 8: 343-352.
    Bullitt, E., Jones, C.H., Striker, R., Soto, G., Jacob-Dubuisson, F., Pinkner, J., Wick, M.J., Makowski, L., and Hultgren, S.J. (1996) Development of pilus organelle subassemblies in vitro depends on chaperone uncapping of a beta zipper. Proc Natl Acad Sci U S A 93: 12890-12895.
    Chiang, C.Y., Pan, Y.R., Chou, L.F., Fang, C.Y., Wang, S.R., Yang, C.Y., and Chang, H.Y. (2007) Functional epitopes on porcine endogenous retrovirus envelope protein interacting with neutralizing antibody combining sites. Virology 361: 364-371.
    Choudhury, D., Thompson, A., Stojanoff, V., Langermann, S., Pinkner, J., Hultgren, S.J., and Knight, S.D. (1999) X-ray structure of the FimC-FimH chaperone-adhesin complex from uropathogenic Escherichia coli. Science 285: 1061-1066.
    Duncan, M.J., Mann, E.L., Cohen, M.S., Ofek, I., Sharon, N., and Abraham, S.N. (2005) The distinct binding specificities exhibited by enterobacterial type 1 fimbriae are determined by their fimbrial shafts. J Biol Chem 280: 37707-37716.
    Garnier, J., Gibrat, J.F., and Robson, B. (1996) GOR method for predicting protein secondary structure from amino acid sequence. Methods Enzymol 266: 540-553.
    Georgiou, G., Stathopoulos, C., Daugherty, P.S., Nayak, A.R., Iverson, B.L., and Curtiss, R., 3rd (1997) Display of heterologous proteins on the surface of microorganisms: from the screening of combinatorial libraries to live recombinant vaccines. Nat Biotechnol 15: 29-34.
    Gerlach, G.F., Allen, B.L., and Clegg, S. (1988) Molecular characterization of the type 3 (MR/K) fimbriae of Klebsiella pneumoniae. J Bacteriol 170: 3547-3553.
    Gerlach, G.F., Allen, B.L., and Clegg, S. (1989a) Type 3 fimbriae among enterobacteria and the ability of spermidine to inhibit MR/K hemagglutination. Infect Immun 57: 219-224.
    Gerlach, G.F., Clegg, S., and Allen, B.L. (1989b) Identification and characterization of the genes encoding the type 3 and type 1 fimbrial adhesins of Klebsiella pneumoniae. J Bacteriol 171: 1262-1270.
    Hedegaard, L., and Klemm, P. (1989) Type 1 fimbriae of Escherichia coli as carriers of heterologous antigenic sequences. Gene 85: 115-124.
    Hornick, D.B., Thommandru, J., Smits, W., and Clegg, S. (1995) Adherence properties of an mrkD-negative mutant of Klebsiella pneumoniae. Infect Immun 63: 2026-2032.
    Hsu, H.Y., (2007) MrkA, the major pilin of Klebsiella pneumoniae type 3 fimbriae─identification of critical regions for the fimbriae assembly and dispensable regions for display system development. National Tsing-Hua University Master Dissertation.
    Huang, Y.J., Wu, C.C., Chen, M.C., Fung, C.P., and Peng, H.L. (2006) Characterization of the type 3 fimbriae with different MrkD adhesins: possible role of the MrkD containing an RGD motif. Biochem Biophys Res Commun 350: 537-542.
    Hultgren, S.J., Normark, S., and Abraham, S.N. (1991) Chaperone-assisted assembly and molecular architecture of adhesive pili. Annu Rev Microbiol 45: 383-415.
    Hultgren, S.J., Abraham, S., Caparon, M., Falk, P., St Geme, J.W., 3rd, and Normark, S. (1993) Pilus and nonpilus bacterial adhesins: assembly and function in cell recognition. Cell 73: 887-901.
    Jacob-Dubuisson, F., Pinkner, J., Xu, Z., Striker, R., Padmanhaban, A., and Hultgren, S.J. (1994) PapD chaperone function in pilus biogenesis depends on oxidant and chaperone-like activities of DsbA. Proc Natl Acad Sci U S A 91: 11552-11556.
    Jagnow, J., and Clegg, S. (2003) Klebsiella pneumoniae MrkD-mediated biofilm formation on extracellular matrix- and collagen-coated surfaces. Microbiology 149: 2397-2405.
    Jones, C.H., Pinkner, J.S., Roth, R., Heuser, J., Nicholes, A.V., Abraham, S.N., and Hultgren, S.J. (1995) FimH adhesin of type 1 pili is assembled into a fibrillar tip structure in the Enterobacteriaceae. Proc Natl Acad Sci U S A 92: 2081-2085.
    Kil, K.S., Darouiche, R.O., Hull, R.A., Mansouri, M.D., and Musher, D.M. (1997) Identification of a Klebsiella pneumoniae strain associated with nosocomial urinary tract infection. J Clin Microbiol 35: 2370-2374.
    Klemm, P., and Schembri, M.A. (2000) Fimbrial surface display systems in bacteria: from vaccines to random libraries. Microbiology 146 Pt 12: 3025-3032.
    Kuehn, M.J., Ogg, D.J., Kihlberg, J., Slonim, L.N., Flemmer, K., Bergfors, T., and Hultgren, S.J. (1993) Structural basis of pilus subunit recognition by the PapD chaperone. Science 262: 1234-1241.
    Lederman, E.R., and Crum, N.F. (2005) Pyogenic liver abscess with a focus on Klebsiella pneumoniae as a primary pathogen: an emerging disease with unique clinical characteristics. Am J Gastroenterol 100: 322-331.
    Lindberg, F., Tennent, J.M., Hultgren, S.J., Lund, B., and Normark, S. (1989) PapD, a periplasmic transport protein in P-pilus biogenesis. J Bacteriol 171: 6052-6058.
    Nassif, X., and Sansonetti, P.J. (1986) Correlation of the virulence of Klebsiella pneumoniae K1 and K2 with the presence of a plasmid encoding aerobactin. Infect Immun 54: 603-608.
    Podschun, R., and Ullmann, U. (1998) Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev 11: 589-603.
    Pugsley, A.P. (1993) The complete general secretory pathway in gram-negative bacteria. Microbiol Rev 57: 50-108.
    Sauer, F.G., Futterer, K., Pinkner, J.S., Dodson, K.W., Hultgren, S.J., and Waksman, G. (1999) Structural basis of chaperone function and pilus biogenesis. Science 285: 1058-1061.
    Sauer, F.G., Barnhart, M., Choudhury, D., Knight, S.D., Waksman, G., and Hultgren, S.J. (2000) Chaperone-assisted pilus assembly and bacterial attachment. Curr Opin Struct Biol 10: 548-556.
    Simoons-Smit, A.M., Verweij-van Vught, A.M., and MacLaren, D.M. (1986) The role of K antigens as virulence factors in Klebsiella. J Med Microbiol 21: 133-137.
    Sokurenko, E.V., Courtney, H.S., Ohman, D.E., Klemm, P., and Hasty, D.L. (1994) FimH family of type 1 fimbrial adhesins: functional heterogeneity due to minor sequence variations among fimH genes. J Bacteriol 176: 748-755.
    Soto, G.E., Dodson, K.W., Ogg, D., Liu, C., Heuser, J., Knight, S., Kihlberg, J., Jones, C.H., and Hultgren, S.J. (1998) Periplasmic chaperone recognition motif of subunits mediates quaternary interactions in the pilus. Embo J 17: 6155-6167.
    Soto, G.E., and Hultgren, S.J. (1999) Bacterial adhesins: common themes and variations in architecture and assembly. J Bacteriol 181: 1059-1071.
    Starks, A.M., Froehlich, B.J., Jones, T.N., and Scott, J.R. (2006) Assembly of CS1 pili: the role of specific residues of the major pilin, CooA. J Bacteriol 188: 231-239.
    Striker, R., Jacob-Dubuisson, F., Freiden, C., and Hultgren, S.J. (1994) Stable fiber-forming and nonfiber-forming chaperone-subunit complexes in pilus biogenesis. J Biol Chem 269: 12233-12239.
    Tarkkanen, A.M., Virkola, R., Clegg, S., and Korhonen, T.K. (1997) Binding of the type 3 fimbriae of Klebsiella pneumoniae to human endothelial and urinary bladder cells. Infect Immun 65: 1546-1549.
    Thanassi, D.G., Saulino, E.T., and Hultgren, S.J. (1998) The chaperone/usher pathway: a major terminal branch of the general secretory pathway. Curr Opin Microbiol 1: 223-231.
    Van Die, I., Wauben, M., Van Megen, I., Bergmans, H., Riegman, N., Hoekstra, W., Pouwels, P., and Enger-Valk, B. (1988) Genetic manipulation of major P-fimbrial subunits and consequences for formation of fimbriae. J Bacteriol 170: 5870-5876.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE