簡易檢索 / 詳目顯示

研究生: 王韋婷
Wang, Wei-Ting
論文名稱: 新穎聚離子錯合型微胞運用於抗菌藥物輸送之研發
Development of Novel Polyion Complex Micelles for Antifungal Drug Delivery
指導教授: 薛敬和
Hsiue, Ging-Ho
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 99
中文關鍵詞: 兩性黴素B聚□唑啉聚天冬胺酸聚離子錯合型微胞藥物控制釋放體外抗黴菌效率
外文關鍵詞: Amphotericin B, poly(2-ethyl-2-oxazoline), poly(aspartic acid), Polyion complex micelle, Drug controlled release, Antifungal activity
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之目的是利用聚□唑啉-聚天冬胺酸兩團聯共聚物(Poly(2-ethyl-2-oxazoline)-block-Poly(aspartic acid),PEOz-b-PAsp)以靜電作用力包覆正電藥物兩性黴素B (amphotericin B),形成具有核殼結構 (core-shell structure)新穎性聚離子錯合型微胞 (polyion complex micelles,PIC micelles)做為藥物輸送載體。內核的聚胺基酸高分子Poly(aspartic acid) (PAsp),為親水性高分子,側端具有羧基,在水溶液酸鹼值高於pKa (pH>5.2)環境下會解離,能以離子鍵攜帶大量陽離子藥物,亦提供疏水性物理作用力,增加藥物包覆效率。使用薄膜水合法製備出的AmB/PEOz-b-PAsp之聚離子錯合型微胞其平均粒徑在150 nm以下,且包覆率均達40 %以上。在藥物釋放部分,AmB/PEOz-b-PAsp之聚離子錯合型微胞在40小時可將60 % AmB釋放。在抗菌實驗中,AmB/PEOz-b-PAsp之聚離子錯合型微胞其最低抑制濃度 (MIC) 為20μg/mL。在三天後仍然有效抑制菌的生長,抗菌時效比Fungizone®更佳。成功將AmB/PEOz-b-PAsp PIC微胞運用於藥物傳遞,AmB/PEOz-b-PAsp PIC微胞有效率將AmB包覆和釋放,對於抑制真菌有長效作用,並且對於正常細胞沒有產生明顯毒性。綜合以上實驗結果得知,本研究中成功利用兩團聯共聚物建立出新穎性聚離子錯合型微胞,其具有奈米尺寸、低毒性,高藥物釋放效率等優點,對於藥物傳輸系統上具有相當應用之潛力。
    關鍵字: 兩性黴素B (amphotericin B)、聚□唑啉、聚天冬胺酸、聚離子錯合型微胞、藥物控制釋放、體外抗黴菌效率


    A novel poly(2-ethyl-2-oxazoline)-block-poly(aspartic acid) (PEOz-b-PAsp) was synthesized and investigated as a potential carrier for the amphotericin B (AmB) delivery in forming polyion complex (PIC) micelles. Nano-scale AmB/PEOz-b-PAsp PIC micelles were prepared by thin film method. The nano-scale PIC micelles with core-shell structure were formed with a hydrophilic outer shell and dissociation of the carboxylic group from PAsp to become a hydrophobic inner core for drug delivery application. The resulting nano-scale PIC micelles with AmB and PEOz-b-PAsp showed an average diameter about 108 nm. The drug content of the PIC micelles can be as high as 47 % in phosphate buffer solution with pH 7.4. The release of AmB from nano-scale PIC micelles was 60 % at 40 h in phosphate buffer solution with pH 7.4. The minimal inhibitory concentration (MIC) of PIC micelles was 20μg/mL, and antifungal activity of PIC micelles was better than Fungizone® during 72 hrs. In conclusion, AmB/PEOz-b-PAsp PIC micelles were developed and optimized for drug delivery to allow efficient antifungal activity with low cytotoxicity. Engineering of biodegradable polymers to form non-covalent drug-polymer interactions of PIC micelles constitutes a useful approach for the future design of drug carriers.
    Keywords: Amphotericin B, Diblock copolymer, Polyion complex micelle, Drug controlled release, Antifungal activity.

    目 錄 摘 要………………………………………………………I Abstract………………………………………………………II 目 錄………………………………………………………III 圖 目 錄………………………………………………………VII 表 目 錄………………………………………………………XI 第一章 研究背景與動機....................................1 第二章 相關理論與文獻....................................4 2-1. 生物可分解高分子....................................4 2-2聚醯胺 (polyamide)與聚胺基酸(polyamino acid)..........6 2-2-1聚胺基酸............................................7 2-2-2聚醯胺..............................................7 2-3 聚□唑啉 (poly(2-oxazoline)).........................9 2-3-1起始劑 (initiators).................................11 2-3-2反應機構............................................12 2-3-4性質與應用..........................................14 2-4 聚天冬胺酸 (polyaspartic acid).......................15 2-4-1起始劑 (initiators).................................17 2-4-2反應機構............................................18 2-4-5性質與應用..........................................19 2-5 藥物介紹 (amphotericin B,AmB).......................21 2-5 高分子微胞在藥物制放上的應用.........................26 2-5-1高分子微胞的化學結構................................26 2-5-2藥物包覆的方式......................................27 2-6 聚離子錯合型微胞 (polyion complex micelles)..........31 第三章 實驗方法..........................................34 3-1 實驗藥品.............................................34 3-2 實驗儀器與裝置.......................................36 3-3 名詞對照.............................................37 3-4 兩團聯共聚物poly(2-ethyl-2-oxazoline)-b-poly(aspartic acid) (PEOz-b-PAsp)之合成................................38 3-4-1 N-carboxy-β-benzyl-L-aspartate anhydride (Asp(OBzl)-NCA)之合成.......................................................38 3-5巨起始劑 (macroinitiator) PEOz-NH2之合成與鑑定........39 3-6 兩團聯共聚物poly(2-ethyl-2-oxazoline)-b-poly(β-benzyl- L-aspartate) (PEOz-b-PBAsp) 之合成.......................40 3-7兩團聯共聚物poly(2-ethyl-2-oxazoline)-b-poly(aspartic acid) (PEOz-b-PAsp)之合成................................41 3-8 鑑定與分析...........................................42 3-8-1分子量及分子量分佈..................................42 3-8-2 1H-NMR與FT-IR光譜分析..............................42 3-8-3 末端一級胺比例分析(TNBS method)....................42 3-9 兩團聯共聚物之酸鹼滴定分析...........................43 3-10 兩團聯共聚物之光學穿透度測試........................43 3-11 製備AmB/PEOz-b-PAsp 聚離子錯合型微胞 (polyion complex micelles,PIC micelles)..................................44 3-11-1 AmB/PEOz-b-PAsp PIC micelles之粒徑分析............44 3-11-2 AmB/PEOz-b-PAsp PIC micelles之藥物包覆量分析......44 3-11-3 AmB/PEOz-b-PAsp PIC micelles之表面結構分析........45 3-12 聚離子錯合型微胞之體外藥物釋放模擬..................46 3-13 聚離子錯合型高分子微胞之穩定性測試..................47 3-14 聚離子錯合型高分子微胞之細胞毒性....................48 3-15 聚離子錯合型微胞之體外抗菌實驗 (In vitro antifungal)..............................................49 第四章 結果與討論........................................50 4-1 Asp(OBzl)-NCA之合成與鑑定............................50 4-2巨起始劑 (macroinitiator) PEOz-NH2之合成與鑑定........54 4-3兩團聯共聚物PEOz-b-PBAsp 之合成與鑑定.................57 4-4兩團聯共聚物PEOz-b-PAsp之合成與鑑定...................61 4-5 兩團聯共聚物PEOz-b-PAsp之緩衝性質分析................64 4-6 兩團聯共聚物PEOz-b-PAsp之光學穿透度分析..............66 4-7 兩團聯共聚物PEOz-b-PAsp之細胞毒性....................69 4-8聚離子錯合型高分子微胞 (AmB/PEOz-b-PAsp PIC micelles) 之性質分析.................................................71 4-8-1 AmB及聚離子錯合物微胞全波長掃瞄之吸收光譜..........73 4-8-2 粒徑分析...........................................75 4-8-3 聚離子錯合型微胞之藥物包覆量分析...................78 4-8-4聚離子錯合型微胞之表面型態分析......................80 4-9聚離子錯合型微胞之體外藥物釋放模擬....................82 4-9聚離子錯合型微胞之穩定性測試..........................84 4-10聚離子錯合型微胞之細胞毒性...........................85 4-12聚離子錯合型微胞之體外抗菌試驗.......................87 第五章 結論..............................................91 第六章 參考文獻..........................................93 圖目錄 圖2- 1. 生物可分解高分子分解途徑.........................6 圖2- 2. 三級醯胺之共振結構...............................9 圖2- 3. Oxazoline聚合反應之異構化........................10 圖2- 4. 聚合2-oxazoline之雙官能基起始劑..................11 圖2- 5. 反陰離子與成長物質的親核性比較...................13 圖2- 6. 2-oxazolines聚合之反應機構.......................13 圖2- 7. 常見生物可分解高分子.............................15 圖2- 8. 利用水解合成聚天冬胺酸...........................16 圖2- 9. 利用熱縮合法合成聚天冬胺酸.......................17 圖2- 10. Amine mechanism.................................18 圖2- 11. AM mechanism....................................18 圖2 12. 天冬胺酸結構.....................................19 圖2 13. Amphotericin B結構...............................22 圖2 14. 高分子微胞包覆藥物的方法 (a) 透析法(b) 乳化法....28 圖 2 15. 微胞所形成高分子藥物............................29 圖2-16. 化學鍵結包覆藥物之示意圖.........................30 圖2- 17. PEG-g-PAsp 形成PIC示意圖........................32 圖3- 1. Asp(OBzl)-NCA合成示意圖.........................38 圖3- 2. 合成PEOz-NH2之示意圖.............................39 圖3- 3. 合成PEOz-b-PBAsp之示意圖.........................40 圖3- 4. 合成PEOz-b-PAsp之示意圖..........................41 圖3- 5. 以Glycine配置為標準品之一級胺濃度檢量線..........43 圖3- 6. Amphotericin B 在緩衝溶液(pH7.4)/ DMSO等比混合溶液之檢量線...................................................45 圖3-7. AmB 在pH 7.4 磷酸鹽緩衝溶液之檢量線...............46 圖4- 1. Asp(OBzl)-NCA及β-Benzyl L-aspartate之FT-IR光譜...52 圖4- 2. β-Benzyl L-aspartate之1H-NMR光譜.................53 圖4- 3. Asp(OBzl)-NCA之1H-NMR光譜........................53 圖4- 4. 單體2-ethyl-2-oxazoline之1H-NMR光譜..............55 圖4- 5. PEOz-NH2之1H-NMR光譜.............................56 圖4- 6. PEOz-NH2之FT-IR光譜 ..............................56 圖4- 7. PEOz-b-PBAsp之GPC鑑定分析........................58 圖4- 8. PEOz-b-PBAsp與PEOz-NH2之FT-IR光譜................60 圖4- 9. PEOz-b-PBAsp之1H-NMR光譜.........................60 圖4- 10. PEOz-b-PAsp之FT-IR光譜..........................63 圖4- 11. PEOz-b-PAsp之1H-NMR光譜.........................63 圖4- 12. PEOz-b-PAsp解離示意圖...........................64 圖4- 13. PEOz-b-PAsp之滴定曲線...........................65 圖4- 14. PEOz-b-PAsp於解離後產生之分子內與分子間氫鍵.....66 圖4- 15. PEOz-b-PAsp於解離後高分子鏈段形成聚集現象.......67 圖4- 16. PEOz-b-PAsp於不同pH值下光學穿透度之改變情形.....68 圖4- 17. PEOz-b-PAsp於不同pH值下之照片...................68 (a)A92B31;(b)A92B12.....................................68 圖4- 18. 兩團聯共聚物在各種濃度下與HT1080培養24小時之細胞存活率(n=4)............................................. 70 圖4- 19. 兩團聯共聚物在各種濃度下與HT1080培養72小時之細胞存活率(n=4)................................................70 圖4- 20. 聚離子錯合型型微胞製備之示意圖..................72 圖4- 21. AmB及聚離子錯合型微胞之UV-Vis全波長掃瞄吸收光譜.74 圖4- 22.聚離子錯合型微胞形成之示意圖.....................75 圖4- 23. 不同AmB與Polymer莫耳比下之粒徑變化圖............77 圖4- 24. 聚離子錯合型微胞之藥物包覆率....................78 圖4- 25.聚離子錯合型微胞形成之示意圖.....................79 圖4- 26聚離子錯合型微胞之TEM影像.........................81 圖4- 27聚離子錯合型微胞之AFM影像.........................81 圖4- 28 聚離子錯合型微胞於pH7.4下體外藥物釋放行為........83 圖4- 29含有4 wt. %BSA之pH 7.4緩衝溶液下聚離子錯合型微胞之粒徑與時間關係圖(37℃).....................................84 圖4- 30 兩團聯共聚物、Fungizone®與聚離子錯合型微胞在各種濃度下與HT1080培養24小時之細胞存活率(n=4)..................86 圖4- 31 兩團聯共聚物、Fungizone®與聚離子錯合型微胞在各種濃度下與HT1080培養72小時之細胞存活率(n=4)..................86 圖4- 32 Fungizone®與聚離子錯合型微胞在不同濃度下與C. albicans培養24小時對其生長抑制效果(n=4)..................88 圖4- 33聚離子錯合型微胞在不同濃度下與C. albicans培養24小時對其生長抑制照片(n=4)......................................88 圖4- 34 Fungizone®在不同濃度下與C. albicans培養24小時對其生長抑制照片(n=4)..........................................89 圖4- 35 Fungizone®與聚離子錯合型微胞在不同濃度下與C. albicans培養72小時對其生長抑制效果(n=4).................89 圖4- 36聚離子錯合型微胞在不同濃度下與C. albicans培養72小時對其生長抑制照片(n=4)).....................................90 圖4- 37 Fungizone®在不同濃度下與C. albicans培養72小時對其生長抑制照片(n=4)..........................................90 表目錄 表2-1. 常見之生物可分解性高分子...........................5 表2-2. 聚合2-oxazoline常用之起始劑.......................12 表2-2. 各種鍵結型高分子微胞之比較........................33 表4- 1. Asp(OBzl)NCA之進料比與性質分析...................52 表4- 2. PEOz-NH2之進料比與性質分析.......................55 表4- 3. PEOz-b-PBAsp之組成比與性質分析...................58 表4- 4. PEOz-b-PAsp之產率與性質分析......................62 表4-5 PEOz-b-PAsp PIC micelles之粒徑與分佈...............76

    1. Y. Bae, S. Fukushima, A. Harada, K. Kataoka, Angew.
    Chem. Int. Ed. 2003, 42, 4640.
    2. B.G. Yu, T. Okano, K. Kataoka, G.S. Kwon, J. Control.
    Release. 1998, 53, 131-136.
    3. S.B. La, T. Okano, K. Kataoka, J. Pharm. Sci. 1996, 85,
    85-90.
    4. I.G. Shin, S.Y. Kim, Y.M. Lee, C.S. Cho, Y.K. Sung, J.
    Control. Release. 1998, 51, 1-11.
    5. G.S. Kwon, M. Naito, M. Yokoyama, T. Okano, Y. Sakurai,
    K. Kataoka, J. Control. Release 1997, 489, 195-201.
    6. G.S. Kwon, M. Naito, M. Yokoyama, T. Okano, Y. Sakurai,
    K. Kataoka, Pharm. Res. 1995, 12, 192-195.
    7. M. Yokoyama, S. Fukuhima, R. Uehara, K. Okamoto, K.
    Kataoka, Y. Sakurai, T. Okano, J. Control. Release. 1998,
    50, 79-92.
    8. T.K. Bronich, V.A. Kabanov, A.V. Kabanov, A. Eisenberg,
    Macromolecules 1997, 30, 3519.
    9. R. Chandra, R. Rustgi, Prog. Polym. Sci., 1998, 23, 1273-1335.
    10. K. E. Uhrich, S. M. Cannizzaro, R. S. Langer, K. M.
    Shakesheff, Chem. Rev., 1999, 99, 3181.
    11. T. Kagiya, S. Narisawa, T. Maeda and K. Fukui, J. Polym.
    Sci. Polym. Lett. Ed. 1966, B4, 441.
    12. T. Saegusa, Makromol. Chem., Macromol. Symp. 1988,
    13/14, 111
    13. K. Aoi and M. Okada, Prog. Polym. Sci. 1996, 21, 151.
    14. S. Kobayashi, E. Masuda, S. I. Shoda and Y. Shimano,
    Macromolecules 1989, 22, 2878.
    15. I. C. Kwon, Y. H. Bae and S. W. Kim, Nature 1991, 354,
    291.
    16. J. Kovacs, I. Koenyves, A. Pusztai, Experientia 1953, 9,
    259.
    17. S. K Wolk, G. Swift, Y. H. Paik, K. M. Yocom, R. L.
    Smith, E. S. Simon, Macromolecules 1994,27, 7613.
    18. A. Vegotosky, K. Harada, S. W. Fox, J. Am. Chem. Soc.
    1958,80, 3361
    19. K. Harada, J. Org. Chem. 1959, 24, 4, 1662.
    20. J. Kovacs, H. N. Kovacs, I. Konyves,; J. Csaszar, T. Vajda,
    H. Mix, J. Org. Chem. 1961, 26, 1084
    21. P. Neri, G. Antoni, F. Benvenuti, F. Cocoda, G. J. Gazze,
    Med. Chem. 1973, 16, 893.
    22. M. Frankel and A. Berg, Nature, 1949, 168 ,213.
    23. Meggy, A. B., J. Chem. Soc., 1956, 1444 .
    24. K. Harada, S. W. Fox, J. Am. Chem. Soc. 1958, 80, 2694.
    25. S. W. Fox, K. Harada, J. Am. Chem. Soc. 1960, 82, 3744.
    26. N. Honda, T. Kawai, F. Higashi, Makromol. Chem. 1978,
    179 (6), 1643.
    27. Y. Ito, K. Iwata, I. K. Kang, Y. Imanishi, M. Sisido, Int.
    J.Biol. Macromol. 1988, 10 (4), 201.
    28. E. Dessipri, K. H. Yeap,; D. A. Tirrell, Polym. Prepr.
    (Am.Chem. Soc., Div. Poly. Chem.) 1995, 36 (1), 536.
    29. (a) H.R. Kricheldorf, a-Aminoacid-N-carboxyanhydrides
    and Related Materials, Springer, New York, 1987;
    (b) H.R. Kricheldorf, in: S. Penczek (Ed.), Models of
    Biopolymers by Ring-Opening Polymerization, CRC Press,
    Boca Raton, FL, 1990. (1994) 429–434.
    30. R. A. Gross, B. Kalra, Science 2002, 297, 803.
    31. P. E. Kintzel, G. H. Smith, Am. J. Hosp. pharm. 1992 ,49,
    1156-1164
    32. D. J. Drutz, A. Spickard , D. E. Rogers et al., Am. J. Med.
    1968, 45, 405-418.
    33. M. L. Littman, P. L. Horowitz, J.G. Swadey, Am. J. Med.
    1958, 24, 568-592.
    34. H. Bader, H. Ringsdorf, B. Schmidt, Angew. Makromol.
    Chem. 1984, 123/124, 457.
    35. M. Malmsten, B. Lindman, Macromolecules 1992, 25,
    5440.
    36. K. N. Prasad, T. T. Luong, A. T. Florence, J. Paris, C.
    Vaution, M. Seiller, F. Puisieux, J. Colloid Interface Sci.
    1979, 69, 225.
    37. A. V. Kabanov, V. P. Chekhonin, V. Y. Alakhov, E. V.
    Batrakova, A. S. Lebedev, N. S. Melik-Nubarov, S. A.
    Arzhakov, A. V. Levashov, G. V. Morozov, E. S. Severin,
    V. A. Kabanov, FEBS Lett. 1989, 258, 343.
    38. S. B. La, T. Okano, K. Kataoka, J. Pharm. Sci. 1996, 85,
    85.
    39. J. Connor, N. Norley, L. Huang, Biochim. Biophys. Acta
    1986, 884, 474.
    40. I. L. Shin, S. Y. Kim, Y. M. Lee, C. S. Cho, Y. K. Sung, J.
    Control. Release. 1998, 51, 1.
    41. C. L. Zhao, M. A. Winnik, G. Riess, M. D. Croucher,
    Langmuir 1990, 6, 514.
    42. T. Inoue, G. Chen, K. Nakamae, A. S. Hoffman, J. Control.
    Release. 1998, 51, 221.
    43. L. W. Seymour, R. Duncan, J. Strohalm, J. Kopecek, J.
    Biomed. Mater. Res. 1987, 21, 1341.
    44. A. Harada, K. Kataoka, Macromolecules 1998, 31, 288.
    45. K. Kataoka, H. Togawa, A. Harada, K. Yasugi,
    Macromolecules 1996, 29, 8556.
    46. A. Harada, A. Kataoka, Macromolecules 1995, 28, 5294.
    47. Yokoyama et al,. J. Control. Release. 1990, 11, 269.
    48. G.S. Kwon, K. Kataoka, Adv. Drug Deliv. Rev., 1995, 16,
    295–309
    49. G.S. Kwon, M. Yokoyama, T. Okano, Y. Sakurai, K.
    Kataoka, Pharm. Res., 1993, 10, 970.
    50. M. Yokoyama, M. Miyauchi, N. Yamada, T. Okano,
    Sakurai, K. Kataoka, S. Inoue, Cancer Res , 1990, 50,
    1693.
    51. Y. Bae, S. Fukushima, A. Harada, K. Kataoka, Angew.
    Chem. Int. Ed. 2003, 42, 4640.
    52. S. Katayose, K. Kataoka, J. Pharm. Sci. 1998, 87, 160.
    53. A.V. Kabanov, T.K. Bronich, V.A. Kabanov, A. Eisenberg,
    Macromolecules 1996, 29, 6797.
    54. G.D. Zhang, A. Harada, N. Nishiyama, Journal of Controlled
    Release 2003, 93, 141.
    55. A. Harada, K. Kataoka, Langmiur 1999, 15, 4208
    56. A. Harada, K. Kataoka, Macromolecules 1998, 31, 288.
    57. A. Harada, K. Kataoka, Macromolecules 1998, 31,
    288-294.
    58. A. Harada, K. Kataoka, Pure Appl. Chem. 1997, A31, 2119-2133.
    59. S. Katayose, K. Kataoka, J. Pharm. Sci., 1998, 87, 160–163.
    60. K. Kataoka, H. Togawa, A. Harada, K. Yasugi, T. Matsumoto, S.
    Katayose, Macromolecules, 1996, 29, 8556–8557.
    61. M.A. Wolfert, E.H. Schacht, V. Toncheva, K. Ulrich, O. Nazarova,
    L.W. Seymour, Human Gene Ther., 1996, 7, 2123–2133.
    62. L.W. Seymour, K. Kataoka, A.V. Kabanov, Cationic block
    copolymers as self-assembling vectors for gene delivery, in: A.V.
    Kabanov, L.W. Seymour, P. Felgner (Eds.), Self-Assembling
    Complexes for Gene Delivery. Laboratory to Clinical Trial, John
    Wiley and Sons, Chichester, 1998, pp. 219–239.
    63. A. Harada, K. Kataoka. J. Macromol. Sci., Pure Appl.
    Chem 1997,A34, 2119, 2133.
    64. T.K. Bronich, V.A. Kabanov, A.V. Kabanov, A. Eisenberg,
    Macromolecules 1997, 30, 3519.
    65. S. Stolnik, J. Control. Release. 2001, 75, 249.
    66. C. C. Wang, Colloids and Surfaces A: Physicochem. Eng.
    2006, 278 , 60.
    67. (a) E. Lennette, A. Balows, W. Hausler, H.
    Shadomy,Microbiology, American Society for
    Microbiology, Washington, DC 1985, Manual of Clinical
    Microbiology, American Society for Microbiology,
    Washington, DC.
    (b) C. Tasset,, F. Goethals, V. Pr´eat, M. Roland,. Int. J. Pharm.,
    1990, 58, 41–48.
    68. W.D. Fuller, MS. Velander, and M. Goodman, Biopolymers 1976, 15,
    1869
    69. E. Jule, Y. Nagasaki, K. Kataoka, Bioconjug. Chem. 2003, 14, 177.
    70. T. Govender, S. Stolnik, J. Control. Release. 2001, 75, 249.
    71. M. Yokoyama, K. Kataoka, J. Control. Release. 1990 ,11,
    269-278.
    72. S. M. Thombre, B.D. Sarwade,Journal of Macromolecular
    Science,Part A: Pure and Applied Chemistry, 2005, 42, 1299.
    73. T. Nakato, M.Yoshitake, Macromolecular, 1998, 31, 2107.
    74. C. S. Brazel, N. A. Peppas, Macromolecules 1995, 28, 8016.
    75. M. M. Standish, J. C. Watkins. J Mol Biol. 1965, 13, 238-252.
    76. H. Yalkowsky. AAPS PharmSciTech. 2003, 4 Article 52.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE