研究生: |
賴保諺 Lai, Pao-Yen |
---|---|
論文名稱: |
類固醇轉錄因子SF-1的磷酸化修飾及SF-1對細胞生長的影響 Examination of SF-1 phosphorylation and the role of SF-1 in regulating cell growth |
指導教授: |
鍾邦柱
Chung, Bon-chu |
口試委員: |
張大慈
林立元 阮麗蓉 陳怡榮 |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 分子與細胞生物研究所 Institute of Molecular and Cellular Biology |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 79 |
中文關鍵詞: | 中心體 、轉錄 、蛋白酶體 、磷酸化 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
SF-1 is a nuclear receptor involved in steroidogenesis, reproduction, development, differentiation and energy homeostasis. SF-1 exerts its functions mainly by activating the expression of its target genes. So far, how SF-1 transcriptional activity is controlled and how SF-1 regulates cell growth are not entirely clear.
To better understand the regulation of SF-1-mediated transcription, SF-1 phosphorylation was systematically analyzed by mass spectrometry and six phosphorylated peptides were found. The effect of phosphorylation on SF-1-mediated transcription was further examined. DNA-binding domain (DBD) phospho-mimicking SF-1 mutants had impaired transcriptional activity and DNA binding ability. Besides, SF-1-48/50/52/54D mutant was less stable, suggesting that SF-1 stability is modulated by DNA-binding domain phosphorylation. In addition, proteolytic activity of proteasomes was required for optimal cAMP-induced, but not basal, CYP11A1 gene expression. Therefore, the roles of phosphorylation and proteasomes in regulating SF-1-mediated transcription were demonstrated.
To study the function of SF-1 in cell growth, SF-1 was depleted in adrenocortical Y1 cells using shRNA. SF-1 depletion caused centrosome amplification, aberrant mitosis and genomic instability, leading to a reduction of cell number. Thus, SF-1 regulates cell growth and prevents centrosome amplification. The centrosome amplification defect was rescued by both wildtype and transcription defective SF-1, suggesting that transcriptional activity is dispensable for SF-1 to maintain centrosome number. Thus, the results uncover a transcription-independent function of SF-1 in the control of centrosome homeostasis and genomic stability.
In summary, studies shown here demonstrate that SF-1 activity is regulated by the negative charge in the DBD and also uncover a new function of SF-1 in maintaining centrosome homeostasis through a transcription-independent manner.
Abbas, T. and Dutta, A. (2009). p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer 9, 400-14.
Achermann, J. C., Ito, M., Ito, M., Hindmarsh, P. C. and Jameson, J. L. (1999). A mutation in the gene encoding steroidogenic factor-1 causes XY sex reversal and adrenal failure in humans. Nat Genet 22, 125-6.
Aesoy, R., Mellgren, G., Morohashi, K. and Lund, J. (2002). Activation of cAMP-dependent protein kinase increases the protein level of steroidogenic factor-1. Endocrinology 143, 295-303.
Barr, A. R. and Gergely, F. (2007). Aurora-A: the maker and breaker of spindle poles. J Cell Sci 120, 2987-96.
Barrero, M. J. and Malik, S. (2006). Two functional modes of a nuclear receptor-recruited arginine methyltransferase in transcriptional activation. Mol Cell 24, 233-43.
Beuschlein, F., Mutch, C., Bavers, D. L., Ulrich-Lai, Y. M., Engeland, W. C., Keegan, C. and Hammer, G. D. (2002). Steroidogenic factor-1 is essential for compensatory adrenal growth following unilateral adrenalectomy. Endocrinology 143, 3122-35.
Borud, B., Hoang, T., Bakke, M., Jacob, A. L., Lund, J. and Mellgren, G. (2002). The nuclear receptor coactivators p300/CBP/cointegrator-associated protein (p/CIP) and transcription intermediary factor 2 (TIF2) differentially regulate PKA-stimulated transcriptional activity of steroidogenic factor 1. Mol Endocrinol 16, 757-73.
Campbell, L. A., Faivre, E. J., Show, M. D., Ingraham, J. G., Flinders, J., Gross, J. D. and Ingraham, H. A. (2008). Decreased Recognition of SUMO-Sensitive Target Genes following Modification of SF-1 (NR5A1). Molecular and Cellular Biology 28, 7476-7486.
Carlone, D. L. and Richards, J. S. (1997). Functional interactions, phosphorylation, and levels of 3',5'-cyclic adenosine monophosphate-regulatory element binding protein and steroidogenic factor-1 mediate hormone-regulated and constitutive expression of aromatase in gonadal cells. Mol Endocrinol 11, 292-304.
Carmena, M., Ruchaud, S. and Earnshaw, W. C. (2009). Making the Auroras glow: regulation of Aurora A and B kinase function by interacting proteins. Curr Opin Cell Biol 21, 796-805.
Caron, K. M., Ikeda, Y., Soo, S. C., Stocco, D. M., Parker, K. L. and Clark, B. J. (1997). Characterization of the promoter region of the mouse gene encoding the steroidogenic acute regulatory protein. Mol Endocrinol 11, 138-47.
Cheeseman, I. M., Anderson, S., Jwa, M., Green, E. M., Kang, J., Yates, J. R., 3rd, Chan, C. S., Drubin, D. G. and Barnes, G. (2002). Phospho-regulation of kinetochore-microtubule attachments by the Aurora kinase Ipl1p. Cell 111, 163-72.
Chen, D., Pace, P. E., Coombes, R. C. and Ali, S. (1999). Phosphorylation of human estrogen receptor alpha by protein kinase A regulates dimerization. Mol Cell Biol 19, 1002-15.
Chen, W. Y., Juan, L. J. and Chung, B. C. (2005). SF-1 (nuclear receptor 5A1) activity is activated by cyclic AMP via p300-mediated recruitment to active foci, acetylation, and increased DNA binding. Mol Cell Biol 25, 10442-53.
Chen, W. Y., Lee, W. C., Hsu, N. C., Huang, F. and Chung, B. C. (2004). SUMO modification of repression domains modulates function of nuclear receptor 5A1 (steroidogenic factor-1). J Biol Chem 279, 38730-5.
Chen, W. Y., Weng, J. H., Huang, C. C. and Chung, B. c. (2007). Histone Deacetylase Inhibitors Reduce Steroidogenesis through SCF-Mediated Ubiquitination and Degradation of Steroidogenic Factor 1 (NR5A1). Molecular and Cellular Biology 27, 7284-7290.
Crawford, P. A., Sadovsky, Y. and Milbrandt, J. (1997). Nuclear receptor steroidogenic factor 1 directs embryonic stem cells toward the steroidogenic lineage. Mol Cell Biol 17, 3997-4006.
Cunha-Ferreira, I., Bento, I. and Bettencourt-Dias, M. (2009). From zero to many: control of centriole number in development and disease. Traffic 10, 482-98.
D'Assoro, A. B., Lingle, W. L. and Salisbury, J. L. (2002). Centrosome amplification and the development of cancer. Oncogene 21, 6146-53.
Damalas, A., Kahan, S., Shtutman, M., Ben-Ze'ev, A. and Oren, M. (2001). Deregulated beta-catenin induces a p53- and ARF-dependent growth arrest and cooperates with Ras in transformation. Embo J 20, 4912-22.
De Santa Barbara, P., Bonneaud, N., Boizet, B., Desclozeaux, M., Moniot, B., Sudbeck, P., Scherer, G., Poulat, F. and Berta, P. (1998). Direct interaction of SRY-related protein SOX9 and steroidogenic factor 1 regulates transcription of the human anti-Mullerian hormone gene. Mol Cell Biol 18, 6653-65.
Delmotte, M. H., Tahayato, A., Formstecher, P. and Lefebvre, P. (1999). Serine 157, a retinoic acid receptor alpha residue phosphorylated by protein kinase C in vitro, is involved in RXR.RARalpha heterodimerization and transcriptional activity. J Biol Chem 274, 38225-31.
Dennis, A. P., Lonard, D. M., Nawaz, Z. and O'Malley, B. W. (2005). Inhibition of the 26S proteasome blocks progesterone receptor-dependent transcription through failed recruitment of RNA polymerase II. The Journal of steroid biochemistry and molecular biology 94, 337-346.
Dennis, A. P. and O'Malley, B. W. (2005). Rush hour at the promoter: how the ubiquitin-proteasome pathway polices the traffic flow of nuclear receptor-dependent transcription. J Steroid Biochem Mol Biol 93, 139-51.
Desclozeaux, M., Krylova, I. N., Horn, F., Fletterick, R. J. and Ingraham, H. A. (2002). Phosphorylation and Intramolecular Stabilization of the Ligand Binding Domain in the Nuclear Receptor Steroidogenic Factor 1. Molecular and Cellular Biology 22, 7193-7203.
Doghman, M., Cazareth, J., Douguet, D., Madoux, F., Hodder, P. and Lalli, E. (2009). Inhibition of adrenocortical carcinoma cell proliferation by steroidogenic factor-1 inverse agonists. J Clin Endocrinol Metab 94, 2178-83.
Doghman, M., Karpova, T., Rodrigues, G. A., Arhatte, M., De Moura, J., Cavalli, L. R., Virolle, V., Barbry, P., Zambetti, G. P., Figueiredo, B. C. et al. (2007). Increased steroidogenic factor-1 dosage triggers adrenocortical cell proliferation and cancer. Mol Endocrinol 21, 2968-87.
Doxsey, S. (2001). Re-evaluating centrosome function. Nat Rev Mol Cell Biol 2, 688-98.
Doxsey, S., Zimmerman, W. and Mikule, K. (2005). Centrosome control of the cell cycle. Trends Cell Biol 15, 303-11.
Ferraz-de-Souza, B., Lin, L. and Achermann, J. C. (2011). Steroidogenic factor-1 (SF-1, NR5A1) and human disease. Molecular and Cellular Endocrinology 336, 198-205.
Figueiredo, B. C., Cavalli, L. R., Pianovski, M. A., Lalli, E., Sandrini, R., Ribeiro, R. C., Zambetti, G., DeLacerda, L., Rodrigues, G. A. and Haddad, B. R. (2005). Amplification of the steroidogenic factor 1 gene in childhood adrenocortical tumors. J Clin Endocrinol Metab 90, 615-9.
Finley, D. (2009). Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem 78, 477-513.
Floyd, Z. E. and Stephens, J. M. (2002). Interferon-gamma-mediated activation and ubiquitin-proteasome-dependent degradation of PPARgamma in adipocytes. J Biol Chem 277, 4062-8.
Fukasawa, K. (2007). Oncogenes and tumour suppressors take on centrosomes. Nat Rev Cancer 7, 911-24.
Ganem, N. J., Godinho, S. A. and Pellman, D. (2009). A mechanism linking extra centrosomes to chromosomal instability. Nature 460, 278-82.
Gianni, M., Bauer, A., Garattini, E., Chambon, P. and Rochette-Egly, C. (2002). Phosphorylation by p38MAPK and recruitment of SUG-1 are required for RA-induced RAR gamma degradation and transactivation. Embo J 21, 3760-9.
Gummow, B. M., Scheys, J. O., Cancelli, V. R. and Hammer, G. D. (2006). Reciprocal regulation of a glucocorticoid receptor-steroidogenic factor-1 transcription complex on the Dax-1 promoter by glucocorticoids and adrenocorticotropic hormone in the adrenal cortex. Mol Endocrinol 20, 2711-23.
Guo, I. C., Tsai, H. M. and Chung, B. C. (1994). Actions of two different cAMP-responsive sequences and an enhancer of the human CYP11A1 (P450scc) gene in adrenal Y1 and placental JEG-3 cells. J Biol Chem 269, 6362-9.
Hammer, G. D., Krylova, I., Zhang, Y., Darimont, B. D., Simpson, K., Weigel, N. L. and Ingraham, H. A. (1999). Phosphorylation of the nuclear receptor SF-1 modulates cofactor recruitment: integration of hormone signaling in reproduction and stress. Mol Cell 3, 521-6.
Hoivik, E. A., Lewis, A. E., Aumo, L. and Bakke, M. (2010). Molecular aspects of steroidogenic factor 1 (SF-1). Mol Cell Endocrinol 315, 27-39.
Honda, S., Morohashi, K., Nomura, M., Takeya, H., Kitajima, M. and Omura, T. (1993). Ad4BP regulating steroidogenic P-450 gene is a member of steroid hormone receptor superfamily. J Biol Chem 268, 7494-502.
Hossain, A. and Saunders, G. F. (2003). Synergistic cooperation between the beta-catenin signaling pathway and steroidogenic factor 1 in the activation of the Mullerian inhibiting substance type II receptor. J Biol Chem 278, 26511-6.
Hsieh, J. C., Jurutka, P. W., Nakajima, S., Galligan, M. A., Haussler, C. A., Shimizu, Y., Shimizu, N., Whitfield, G. K. and Haussler, M. R. (1993). Phosphorylation of the human vitamin D receptor by protein kinase C. Biochemical and functional evaluation of the serine 51 recognition site. J Biol Chem 268, 15118-26.
Hu, M. C., Guo, I. C., Lin, J. H. and Chung, B. C. (1991). Regulated expression of cytochrome P-450scc (cholesterol-side-chain cleavage enzyme) in cultured cell lines detected by antibody against bacterially expressed human protein. Biochem J 274 ( Pt 3), 813-7.
Hunter, T. (2007). The age of crosstalk: phosphorylation, ubiquitination, and beyond. Molecular Cell 28, 730-738.
Ito, M., Achermann, J. C. and Jameson, J. L. (2000). A naturally occurring steroidogenic factor-1 mutation exhibits differential binding and activation of target genes. J Biol Chem 275, 31708-14.
Ito, M., Yu, R. N. and Jameson, J. L. (1998). Steroidogenic factor-1 contains a carboxy-terminal transcriptional activation domain that interacts with steroid receptor coactivator-1. Mol Endocrinol 12, 290-301.
Jacob, A. L. (2001). Acetylation of Steroidogenic Factor 1 Protein Regulates Its Transcriptional Activity and Recruits the Coactivator GCN5. Journal of Biological Chemistry 276, 37659-37664.
Jadhav, U. and Jameson, J. L. (2011). Steroidogenic Factor-1 (SF-1)-Driven Differentiation of Murine Embryonic Stem (ES) Cells into a Gonadal Lineage. Endocrinology 152, 2870-82.
Jorgensen, J. S. and Nilson, J. H. (2001). AR suppresses transcription of the LHbeta subunit by interacting with steroidogenic factor-1. Mol Endocrinol 15, 1505-16.
Kang, Z., Pirskanen, A., Janne, O. A. and Palvimo, J. J. (2002). Involvement of proteasome in the dynamic assembly of the androgen receptor transcription complex. J Biol Chem 277, 48366-71.
Kim, K. W., Sohn, J. W., Kohno, D., Xu, Y., Williams, K. and Elmquist, J. K. (2011a). SF-1 in the ventral medial hypothalamic nucleus: a key regulator of homeostasis. Mol Cell Endocrinol 336, 219-23.
Kim, K. W., Zhao, L., Donato, J., Jr., Kohno, D., Xu, Y., Elias, C. F., Lee, C., Parker, K. L. and Elmquist, J. K. (2011b). Steroidogenic factor 1 directs programs regulating diet-induced thermogenesis and leptin action in the ventral medial hypothalamic nucleus. Proc Natl Acad Sci U S A 108, 10673-8.
Kinyamu, H. K. and Archer, T. K. (2007). Proteasome activity modulates chromatin modifications and RNA polymerase II phosphorylation to enhance glucocorticoid receptor-mediated transcription. Mol Cell Biol 27, 4891-904.
Kinyamu, H. K., Chen, J. and Archer, T. K. (2005). Linking the ubiquitin-proteasome pathway to chromatin remodeling/modification by nuclear receptors. J Mol Endocrinol 34, 281-97.
Kohler, P. O. and Bridson, W. E. (1971). Isolation of hormone-producing clonal lines of human choriocarcinoma. J Clin Endocrinol Metab 32, 683-7.
Komatsu, T., Mizusaki, H., Mukai, T., Ogawa, H., Baba, D., Shirakawa, M., Hatakeyama, S., Nakayama, K. I., Yamamoto, H., Kikuchi, A. et al. (2004). Small ubiquitin-like modifier 1 (SUMO-1) modification of the synergy control motif of Ad4 binding protein/steroidogenic factor 1 (Ad4BP/SF-1) regulates synergistic transcription between Ad4BP/SF-1 and Sox9. Mol Endocrinol 18, 2451-62.
Kopf, E., Plassat, J. L., Vivat, V., de The, H., Chambon, P. and Rochette-Egly, C. (2000). Dimerization with retinoid X receptors and phosphorylation modulate the retinoic acid-induced degradation of retinoic acid receptors alpha and gamma through the ubiquitin-proteasome pathway. J Biol Chem 275, 33280-8.
Krylova, I. N., Sablin, E. P., Moore, J., Xu, R. X., Waitt, G. M., MacKay, J. A., Juzumiene, D., Bynum, J. M., Madauss, K., Montana, V. et al. (2005). Structural analyses reveal phosphatidyl inositols as ligands for the NR5 orphan receptors SF-1 and LRH-1. Cell 120, 343-55.
Lai, P. Y., Wang, C. Y., Chen, W. Y., Kao, Y. H., Tsai, H. M., Tachibana, T., Chang, W. C. and Chung, B. C. (2011). Steroidogenic Factor 1 (NR5A1) resides in centrosomes and maintains genomic stability by controlling centrosome homeostasis. Cell Death Differ 18, 1836-44.
Lala, D. S., Ikeda, Y., Luo, X., Baity, L. A., Meade, J. C. and Parker, K. L. (1995). A cell-specific nuclear receptor regulates the steroid hydroxylases. Steroids 60, 10-4.
Lan, H. C., Li, H. J., Lin, G., Lai, P. Y. and Chung, B. C. (2007). Cyclic AMP stimulates SF-1-dependent CYP11A1 expression through homeodomain-interacting protein kinase 3-mediated Jun N-terminal kinase and c-Jun phosphorylation. Mol Cell Biol 27, 2027-36.
Lange, C. A., Shen, T. and Horwitz, K. B. (2000). Phosphorylation of human progesterone receptors at serine-294 by mitogen-activated protein kinase signals their degradation by the 26S proteasome. Proc Natl Acad Sci U S A 97, 1032-7.
Lavorgna, G., Karim, F. D., Thummel, C. S. and Wu, C. (1993). Potential role for a FTZ-F1 steroid receptor superfamily member in the control of Drosophila metamorphosis. Proc Natl Acad Sci U S A 90, 3004-8.
Lee, F. Y., Faivre, E. J., Suzawa, M., Lontok, E., Ebert, D., Cai, F., Belsham, D. D. and Ingraham, H. A. (2011). Eliminating SF-1 (NR5A1) sumoylation in vivo results in ectopic hedgehog signaling and disruption of endocrine development. Dev Cell 21, 315-27.
Lee, M. B., Lebedeva, L. A., Suzawa, M., Wadekar, S. A., Desclozeaux, M. and Ingraham, H. A. (2005). The DEAD-Box Protein DP103 (Ddx20 or Gemin-3) Represses Orphan Nuclear Receptor Activity via SUMO Modification. Molecular and Cellular Biology 25, 1879-1890.
Levine, A. J. (1997). p53, the cellular gatekeeper for growth and division. Cell 88, 323-31.
Lewis, A. E., Rusten, M., Hoivik, E. A., Vikse, E. L., Hansson, M. L., Wallberg, A. E. and Bakke, M. (2007). Phosphorylation of Steroidogenic Factor 1 Is Mediated by Cyclin-Dependent Kinase 7. Molecular Endocrinology 22, 91-104.
Li, L. A., Chang, Y. C., Wang, C. J., Tsai, F. Y., Jong, S. B. and Chung, B. C. (2004). Steroidogenic factor 1 differentially regulates basal and inducible steroidogenic gene expression and steroid synthesis in human adrenocortical H295R cells. J Steroid Biochem Mol Biol 91, 11-20.
Li, Y., Choi, M., Cavey, G., Daugherty, J., Suino, K., Kovach, A., Bingham, N. C., Kliewer, S. A. and Xu, H. E. (2005). Crystallographic identification and functional characterization of phospholipids as ligands for the orphan nuclear receptor steroidogenic factor-1. Mol Cell 17, 491-502.
Lin, H. K., Wang, L., Hu, Y. C., Altuwaijri, S. and Chang, C. (2002). Phosphorylation-dependent ubiquitylation and degradation of androgen receptor by Akt require Mdm2 E3 ligase. Embo J 21, 4037-48.
Lin, L. and Achermann, J. C. (2008). Steroidogenic factor-1 (SF-1, Ad4BP, NR5A1) and disorders of testis development. Sex Dev 2, 200-9.
Little, T. H., Zhang, Y., Matulis, C. K., Weck, J., Zhang, Z., Ramachandran, A., Mayo, K. E. and Radhakrishnan, I. (2006). Sequence-specific deoxyribonucleic acid (DNA) recognition by steroidogenic factor 1: a helix at the carboxy terminus of the DNA binding domain is necessary for complex stability. Mol Endocrinol 20, 831-43.
Liu, Z. and Simpson, E. R. (1997). Steroidogenic factor 1 (SF-1) and SP1 are required for regulation of bovine CYP11A gene expression in bovine luteal cells and adrenal Y1 cells. Mol Endocrinol 11, 127-37.
Lonard, D. M., Nawaz, Z., Smith, C. L. and O'Malley, B. W. (2000). The 26S proteasome is required for estrogen receptor-alpha and coactivator turnover and for efficient estrogen receptor-alpha transactivation. Mol Cell 5, 939-48.
Luo, X., Ikeda, Y. and Parker, K. L. (1994). A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell 77, 481-90.
Luo, Z., Wijeweera, A., Oh, Y., Liou, Y. C. and Melamed, P. (2009). Pin1 Facilitates the Phosphorylation-Dependent Ubiquitination of SF-1 To Regulate Gonadotropin -Subunit Gene Transcription. Molecular and Cellular Biology 30, 745-763.
Matsushima-Nishiwaki, R., Okuno, M., Adachi, S., Sano, T., Akita, K., Moriwaki, H., Friedman, S. L. and Kojima, S. (2001). Phosphorylation of retinoid X receptor alpha at serine 260 impairs its metabolism and function in human hepatocellular carcinoma. Cancer Res 61, 7675-82.
Morohashi, K., Honda, S., Inomata, Y., Handa, H. and Omura, T. (1992). A common trans-acting factor, Ad4-binding protein, to the promoters of steroidogenic P-450s. J Biol Chem 267, 17913-9.
Morohashi, K., Tsuboi-Asai, H., Matsushita, S., Suda, M., Nakashima, M., Sasano, H., Hataba, Y., Li, C. L., Fukata, J., Irie, J. et al. (1999). Structural and functional abnormalities in the spleen of an mFtz-F1 gene-disrupted mouse. Blood 93, 1586-94.
Nachtigal, M. W., Hirokawa, Y., Enyeart-VanHouten, D. L., Flanagan, J. N., Hammer, G. D. and Ingraham, H. A. (1998). Wilms' tumor 1 and Dax-1 modulate the orphan nuclear receptor SF-1 in sex-specific gene expression. Cell 93, 445-54.
Nawaz, Z. and O'Malley, B. W. (2004). Urban renewal in the nucleus: is protein turnover by proteasomes absolutely required for nuclear receptor-regulated transcription? Mol Endocrinol 18, 493-9.
Nigg, E. A. (2007). Centrosome duplication: of rules and licenses. Trends Cell Biol 17, 215-21.
Okamoto, M., Takemori, H. and Katoh, Y. (2004). Salt-inducible kinase in steroidogenesis and adipogenesis. Trends Endocrinol Metab 15, 21-6.
Papetti, M., Wontakal, S. N., Stopka, T. and Skoultchi, A. I. (2010). GATA-1 directly regulates p21 gene expression during erythroid differentiation. Cell Cycle 9, 1972-80.
Pickart, C. M. and Cohen, R. E. (2004). Proteasomes and their kin: proteases in the machine age. Nat Rev Mol Cell Biol 5, 177-87.
Raynaud-Messina, B. and Merdes, A. (2007). Gamma-tubulin complexes and microtubule organization. Curr Opin Cell Biol 19, 24-30.
Rice, D. A., Mouw, A. R., Bogerd, A. M. and Parker, K. L. (1991). A shared promoter element regulates the expression of three steroidogenic enzymes. Mol Endocrinol 5, 1552-61.
Sadovsky, Y. and Dorn, C. (2000). Function of steroidogenic factor 1 during development and differentiation of the reproductive system. Rev Reprod 5, 136-42.
Schepers, G., Wilson, M., Wilhelm, D. and Koopman, P. (2003). SOX8 is expressed during testis differentiation in mice and synergizes with SF1 to activate the Amh promoter in vitro. J Biol Chem 278, 28101-8.
Schimmer, B. P. (1985). Isolation of ACTH-resistant Y1 adrenal tumor cells. Methods Enzymol 109, 350-6.
Schimmer, B. P. (2006). Global Profiles of Gene Expression Induced by Adrenocorticotropin in Y1 Mouse Adrenal Cells. Endocrinology 147, 2357-2367.
Schimmer, B. P. and White, P. C. (2010). Minireview: Steroidogenic Factor 1: Its Roles in Differentiation, Development, and Disease. Molecular Endocrinology 24, 1322-1337.
Shang, Z. F., Huang, B., Xu, Q. Z., Zhang, S. M., Fan, R., Liu, X. D., Wang, Y. and Zhou, P. K. (2010). Inactivation of DNA-dependent protein kinase leads to spindle disruption and mitotic catastrophe with attenuated checkpoint protein 2 Phosphorylation in response to DNA damage. Cancer Res 70, 3657-66.
Shih, M. C., Hsu, N. C., Huang, C. C., Wu, T. S., Lai, P. Y. and Chung, B. C. (2008). Mutation of mouse Cyp11a1 promoter caused tissue-specific reduction of gene expression and blunted stress response without affecting reproduction. Mol Endocrinol 22, 915-23.
Staels, B., Hum, D. W. and Miller, W. L. (1993). Regulation of steroidogenesis in NCI-H295 cells: a cellular model of the human fetal adrenal. Mol Endocrinol 7, 423-33.
Subramanian, K., Jia, D., Kapoor-Vazirani, P., Powell, D. R., Collins, R. E., Sharma, D., Peng, J., Cheng, X. and Vertino, P. M. (2008). Regulation of estrogen receptor alpha by the SET7 lysine methyltransferase. Mol Cell 30, 336-47.
Suzuki, T., Kasahara, M., Yoshioka, H., Morohashi, K. and Umesono, K. (2003). LXXLL-related motifs in Dax-1 have target specificity for the orphan nuclear receptors Ad4BP/SF-1 and LRH-1. Mol Cell Biol 23, 238-49.
Tanaka, K. and Tsurumi, C. (1997). The 26S proteasome: subunits and functions. Mol Biol Rep 24, 3-11.
Tissier, F., Cavard, C., Groussin, L., Perlemoine, K., Fumey, G., Hagnere, A. M., Rene-Corail, F., Jullian, E., Gicquel, C., Bertagna, X. et al. (2005). Mutations of beta-catenin in adrenocortical tumors: activation of the Wnt signaling pathway is a frequent event in both benign and malignant adrenocortical tumors. Cancer Res 65, 7622-7.
Tremblay, J. J. and Viger, R. S. (1999). Transcription factor GATA-4 enhances Mullerian inhibiting substance gene transcription through a direct interaction with the nuclear receptor SF-1. Mol Endocrinol 13, 1388-401.
Ueda, H., Sun, G. C., Murata, T. and Hirose, S. (1992). A novel DNA-binding motif abuts the zinc finger domain of insect nuclear hormone receptor FTZ-F1 and mouse embryonal long terminal repeat-binding protein. Mol Cell Biol 12, 5667-72.
Urs, A. N., Dammer, E. and Sewer, M. B. (2006). Sphingosine Regulates the Transcription of CYP17 by Binding to Steroidogenic Factor-1. Endocrinology 147, 5249-5258.
Val, P., Aigueperse, C., Lefrancois-Martinez, A. M., Jean, C., Veyssiere, G. and Martinez, A. (2002). Role of three SF-1 binding sites in the expression of the mvdp/akr1-b7 isocaproaldehyde reductase in Y1 cells. Endocr Res 28, 527-33.
Val, P., Lefrancois-Martinez, A. M., Veyssiere, G. and Martinez, A. (2003). SF-1 a key player in the development and differentiation of steroidogenic tissues. Nucl Recept 1, 8.
Wallace, A. D. and Cidlowski, J. A. (2001). Proteasome-mediated glucocorticoid receptor degradation restricts transcriptional signaling by glucocorticoids. J Biol Chem 276, 42714-21.
Walsh, H. E. and Shupnik, M. A. (2009). Proteasome regulation of dynamic transcription factor occupancy on the GnRH-stimulated luteinizing hormone beta-subunit promoter. Mol Endocrinol 23, 237-50.
Wang, C. and Lin, B. L. (1993). The disappearance of an hsc70 species in mung bean seed during germination: purification and characterization of the protein. Plant Mol Biol 21, 317-29.
Wang, W., Zhang, C., Marimuthu, A., Krupka, H. I., Tabrizizad, M., Shelloe, R., Mehra, U., Eng, K., Nguyen, H., Settachatgul, C. et al. (2005). The crystal structures of human steroidogenic factor-1 and liver receptor homologue-1. Proc Natl Acad Sci U S A 102, 7505-10.
Wu, S. C. and Zhang, Y. (2009). Minireview: role of protein methylation and demethylation in nuclear hormone signaling. Mol Endocrinol 23, 1323-34.
Xu, B., Yang, W. H., Gerin, I., Hu, C. D., Hammer, G. D. and Koenig, R. J. (2009). Dax-1 and steroid receptor RNA activator (SRA) function as transcriptional coactivators for steroidogenic factor 1 in steroidogenesis. Mol Cell Biol 29, 1719-34.
Yang, W. H., Heaton, J. H., Brevig, H., Mukherjee, S., Iniguez-Lluhi, J. A. and Hammer, G. D. (2008). SUMOylation Inhibits SF-1 Activity by Reducing CDK7-Mediated Serine 203 Phosphorylation. Molecular and Cellular Biology 29, 613-625.
Yazawa, T., Kawabe, S., Inaoka, Y., Okada, R., Mizutani, T., Imamichi, Y., Ju, Y., Yamazaki, Y., Usami, Y., Kuribayashi, M. et al. (2011). Differentiation of mesenchymal stem cells and embryonic stem cells into steroidogenic cells using steroidogenic factor-1 and liver receptor homolog-1. Mol Cell Endocrinol 336, 127-32.
Yokoyama, C., Komatsu, T., Ogawa, H., Morohashi, K., Azuma, M. and Tachibana, T. (2009). Generation of rat monoclonal antibodies specific for Ad4BP/SF-1. Hybridoma (Larchmt) 28, 113-9.
Zhang, F., Hu, Y., Huang, P., Toleman, C. A., Paterson, A. J. and Kudlow, J. E. (2007). Proteasome function is regulated by cyclic AMP-dependent protein kinase through phosphorylation of Rpt6. J Biol Chem 282, 22460-71.
Zhao, L., Bakke, M., Krimkevich, Y., Cushman, L. J., Parlow, A. F., Camper, S. A. and Parker, K. L. (2001). Steroidogenic factor 1 (SF1) is essential for pituitary gonadotrope function. Development 128, 147-54.