簡易檢索 / 詳目顯示

研究生: 李世文
論文名稱: 低焓熱源回收系統膨脹器搭配工作流體之設計研究
指導教授: 白寶實
洪祖全
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 85
中文關鍵詞: 廢熱、有機朗肯循環、汽電共生系統、理論分析、實驗環路
外文關鍵詞:
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,由於隨著全世界環保意識的逐漸抬頭,對於一些破壞環境的污染源處理,逐漸的受到法令的限制,如工廠製程所排放的廢熱。而在工業界裡,當廢熱低於某溫度值時,其轉換成動力的效率已大幅度降低,面對低焓值的熱源,使用有機流體當作郎肯循環循環的工作流體,此熱循環稱做有機郎肯循環 ( Organic Rankine Cycle,ORC ),應用有機流體的特殊熱力性質,可達到廢熱有效的回收利用,或是根據工業界製程的需要,搭配汽電共生 ( cogeneration ) 系統,以增加系統動力或電力效率,同時又可兼具環保及經濟上的考量,相信可解決電源需求一直處於短缺的問題並且可提升經濟的發展與產業的升級。
    本研究的工作主要是探討有機郎肯循環應用於低焓熱源回收系統的核心-膨脹作功元件,研究方法分為理論分析與實驗迴路兩部分,在理論分析方面,主要利用流體力學與熱力學的角度,去研究建立輪葉式膨脹器的效能計算以作為設計規劃輪葉式膨脹器的方向,並且探討其應用於ORC系統的熱效率。在實驗迴路方面,則是進行ORC實驗環路的組立,利用HCFC-141b冷煤作為工作流體,將所設計製作的輪葉式膨脹器應用於環路上進行運轉測試,並且做更進一步的整合研究。同時亦改良活塞式膨脹器應用於實驗環路上,並獲得初步的成果。此外,也蒐整了ORC所使用工作流體的安全性,及流體於實驗環路上與材料搭配的相容性問題,可作為日後在材料與流體搭配上的參考。


    第一章 序論....……………………………………………………………………1 1-1 前言……………………………………………………………………….…1 1-2 文獻回顧……………..………………………………………….…………..2 1-3 有機朗肯環路動作原理..…………………………………………………...4 1-4 研究過程與方法………………………………………………………….…5 第二章 工作流體與材料的搭配性………………………………………… .7 2-1 工作流體與材料的選用考量……………………………………………. .7 2-2 ORC可能產生腐蝕的形式………………………………………….….…9 2-3 有機工作流體的物性及化性…………………………………………….12 2-3-1 冷煤類………………..……………………………………….…12 2-3-2 芳香族……..………………………………………………….…17 2-3-3 烷類………………...……………….……………………….…..20 第三章 膨脹器的介紹………………….……………………………………..24 3-1 膨脹器的基本介紹……………………………………………………….24 3-2 輪葉式膨脹器…………………………………………………………….24 3-3 活塞式膨脹器…………………………………………………………….29 第四章 膨脹器之理論分析………..………………………………………....31 4-1 有機朗肯循環系統實驗迴路的計算……………………………….…....31 4-2 膨脹器的特性………………………………………………………….....33 4-3 輪葉式膨脹器之理論模式分析……………………………………...…..34 4-4 輪葉式膨脹器之理論結果與討論……….………………………… …41 第五章 膨脹器的設計建構及改良 ………………………………………..56 5-1 膨脹做功元件的發展及沿革…………………………………………….56 5-2 輪葉式膨脹器的設計及建構…………….………………………………59 5-2-1 第一代輪葉式膨脹器…………………………………………...59 5-2-2 第二代輪葉式膨脹器…………………………………………...61 5-2-3 第三代輪葉式膨脹器…………………………………………...62 5-3 活塞式膨脹器…………………………………………………………….63 第六章 膨脹器實驗環路測試與結果討論………………………………..66 6-1 實驗目的………………………………………………………………….66 6-2 實驗環路測試裝置介紹………………………………………………….66 6-3 輪葉式膨脹器測試結果………………………………………………….70 6-4 活塞式膨脹器測試結果………………………………………………….71 6-5 實驗環路測試結果與討論……………………………………………….75 第七章 結論與未來工作...…………………………………………………....77 7-1 結論……………………………………………………………………….77 7-2 未來工作………………………………………………………………….78 參考文獻……………………………………………………………………………..80

    [1] M. N. Bahadri, 1978, “Solar water pumping,” Solar Energy, 22, pp. 307-16.
    [2] O. Badr, P.W. O’Callaghan, M. Hussein and S.D. Probert, 1984, “Multi-vane expanders as prime movers for low-grade energy Organic Rankine-cycle engines,” a Applied Energy, Vol. 10, pp. 129-146.
    [3] Gerald F. Robertson and Carl H. Wolgemuth, 1975, “Analysis and apparatus for a vane expander using steam,” Proceeding of the 1975 IECEC ,Aug., No.759205, a pp. 1406-1410.
    [4] G. F. Marster and E. Ogbuefi, 1972, “Rotary-vane expander development: Some design considerations,” Proceeding of the 1972 IECEC, Sept., No.729048, pp. 249-254.
    [5] S. E. Eckard, 1975, “Multi-vane expander as prime mover in low temperature a asolar or waste-heat applications,” Proceeding of the 1975 IECEC, Aug., No.729-
    048, pp. 1399-1405.
    [6] O. Badr, S. D. Probert and P.W. O’Callaghan, 1986, “Influences of vane design and lubricant on a multi vane expander performance,” Applied Energy, pp. 271-298.
    [7] Wegen and G.J.van der, 1989, “Corrosion failure of an Organic Rankine Cycle Installation ,” Eur. Congr. Corros..
    [8] O. Badr, S. D. Probert and P.W. O’Callaghan, 1985, “Multi-vane expander performance: breathing characteristics,” Applied Energy, pp241-271.
    [9] O. Badr, S. D. Probert and P.W. O’Callaghan, 1986, “ Influences of vane designnd lubricant on a multi vane expander performance,” Applied Energy, pp271-298.
    [10] Calderazzi,L. and paliano, P., C., D., 1997, “Thermal stability of R-134a , R-141b , R-13I1 , R-7146 , R-125 associated with stainless steel as a containing material,” International Journal Refrigeration, Vol.20, No. 6, pp. 381-389.
    [11] 薛澤源,1998,“有機朗肯循環系統應用於低焓熱源回的理論分析與實驗迴路測試研究”,國立清華大學碩士論文。
    [12] 吳俊逸,2001,“R-600a及R-290自然冷煤空調系統之熱流循環特性模擬與分析”,國立中山大學碩士論文。
    [13] Maizza, V., and Maizza, A., 1996, “Working fluidin non-steady flows for waste energy recovery systems,” Applied Thermal Engineering,Vol.16, No.7, pp. 579-590.
    [14] Lee, M., J., Tien D., and Shao, C., T., 1993, “Thermophysical capability of ozone-safe working fluids for an Organic Rankine Cycle system,” Heat Recovery Systems & CHP, Vol.13, No.5, pp. 409-418.
    [15] Nguyen, V., M., Doherty, P., S., and Riffat, S., B., 2001, “Development of a prot-
    otype low-temperature Rankine Cycle electricity generation system,” Applied Thermal Engineering, Vol.21, pp. 169-181.
    [16] 林貴添、簡國祥,“Organic Rankine Cycle 工作流體物理性質收集報告”,工業技術研究院,能源與資源研究所。
    [17] 傅長樹、洪祖全與陳一雄,“低級廢熱回收發電之技術研究”,國科會研究報告(NSC84-2212-E-214-001),民國85年四月。
    [18] 陳清玉與詹文尊,“實用空壓技術手冊”,機械技術出版社,民國81年月。
    [19] 王繼敏,“不鏽剛與金屬腐蝕”,科技圖書股份有限公司,民國79年11月。
    [20]O. Badr, S. D. Probert and P.W. O’Callaghan, 1985, “Multi-vane Expanders : Geometry and Vane Kinematics,” Applied Energy, pp. 159-182.
    [21] G . F. Marsters and E. Ogbuefi, 1973, “ Rotary vane expander development : some design considerations,” Proceedings of the 1973 IECEC, Sept. aNo.729048, pp. 249-54.
    [22] Z. Barszcz, 1980, “Dynamic analysis of pneumatic vane motors,” Archiwum Budowy .Maszyn, pp. 25-39.
    [23]M. Hussin, 1981, “Low grade energy engines,” PhD Thesis, School of .Mechanical Engineering, Cranfield Insitute of Technology, Bedford, UK.
    [24]Takashisa Yamamoto, Tomohiko Furuhata, Norio Arai and Koichi Mori, 2001, “Design..and testing of the Organic Rankine Cycle,” Energy 26, pp. 239-251.
    [25] American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc., “1993 ASHRAE Handbook Fundamentals,” I-P/e, ASHRAE.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE