簡易檢索 / 詳目顯示

研究生: 蔡易君
論文名稱: 五軸側銑最佳化路徑規劃之改善
Improvement of Optimized Tool Path Planning in 5-Axis Flank Milling
指導教授: 瞿志行
口試委員: 瞿志行
蘇哲平
林棋瑋
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 66
中文關鍵詞: 五軸側銑路徑規劃粒子群最佳化曲線插補同步隨機擾動近似演算法
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 五軸切削技術已被廣泛應用於航太、汽車、能源與模具等產業,由於額外的刀具運動自由度,特別適用於複雜零件的製造。相較於傳統的三軸切削,不僅造型能力優越,亦可大幅提高生產效率。五軸側銑多半用於直紋曲面的加工,以刀柄接觸的材料移除率高,而加工誤差的控制則較為複雜,仍缺乏有效的做法。過往研究將側銑路徑規劃轉換成數學規劃問題,再以演化計算法則求解,實驗結果顯示能有效降低加工誤差,但由於計算效能欠佳,限制了其應用價值。本研究嘗試以三個面向的創新,改善五軸側銑之最佳化路徑規劃。首先探討起始解對於收斂結果的影響,根據粒子群演算法產生局部最佳刀具位置,以此結果做為全域最佳化的起始解。模擬結果顯示,其收斂解對應之加工誤差較佳,優於亂數隨機、或以啟發式演算法產生的起始解。接著提出多層次路徑規劃概念,根據前次加工後胚料做為輸入,重覆計算最佳化刀具路徑,持續降低切削誤差。並發展貪婪與非貪婪兩種規劃方法,比較個別計算上的效能。過往研究多以整個加工曲面做為計算參考,未能透過區域分解提高加工精度,故對此建構曲面分解路徑規劃方法,結合二分法搜尋與同步隨機擾動近似演算法,提供較佳的曲面分解。進階控制器允許以曲線方程式定義刀具運動,可簡化數值控制程式,同時提高加工精度,然而尚欠缺系統化的路徑規劃方法。故最後提出基於曲線插補之路徑規劃,以同步隨機擾動近似調整定義曲線的方程式係數,根據扭曲程度決定曲線個數,自動滿足加工誤差的限制。本研究提出創新的計算法則,改善過往五軸側銑路徑規劃的效能,擴大實際加工的應用價值。


    5-axis machining technology has been widely applied in aerospace, automobile, energy, and mold industries. With two additional degrees of freedom in tool motion, this machining operation is highly suitable to manufacture of complex geometries. Compared to traditional 3-axis machining, it not only offers a good shaping capability, but also high productivity. 5-axis flank milling is normally used for producing ruled geometries. Its material removal rate is high due to the line contact of tool flank. Machining error control is highly complex and effective solutions are still lacking, though. Past research transformed the tool path planning in 5-axis flank milling into a mathematical programming problem and solved for the optimized tool path using evolutionary computation techniques. Experimental results show that this approach can effectively reduce the machining error. However, the computation efficiency is low and thus limits its practical value. This research improves optimized tool path planning in 5-axis flank milling from several aspects. First, the influence of initial solution on the quality of optimal solutions is analyzed. A PSO-based algorithm is proposed to produce local optimal solution, which is then used as the initiation solution in the later global optimization. Simulation results show that the machining error produced in this manner is lower than that of the initial solution randomly generated or the one computed by a heuristic method. Next, we propose a new concept of multi-pass tool path planning. The machined geometry at the current stage is used as the input to the next optimization stage. Greedy and non-greedy planning methods are proposed and compared. In addition, a multi-stage planning method is developed for dividing the surface to be machined into several strips. Binary search and SPSA methods are integrated and serve as a good mechanism of the surface subdivision. Finally, a novel path planning method is proposed for 5-axis flank milling based on CNC spline interpolation. The coefficients of the function that define the tool motion are alculated by SPSA. An adaptive scheme of surface subdivision is developed to guide the optimization process. In conclusion, this research proposes several new computation schemes to improve the effectiveness of the previous tool path planning methods. The practical value of the machining operation is this enhanced.
    Keywords: 5-Axis machining, tool path planning, particle swarm optimization, spline interpolation, Simultaneous perturbation stochastic approximation

    摘要 I Abstract II 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1.1 研究背景 1 第二章 文獻探討 3 第三章 啟發式演算法之探討 7 3.1 誤差定義與估算 7 3.2 路徑編碼 11 3.3 演算法介紹 12 3.4.1 局部最佳化概念 14 3.4.2 基於粒子群演算法之局部最佳化 16 3.5 起始解與演算法計算結果 18 3.6 小結 24 第四章 多次與曲面分解路徑規劃之最佳化 25 4.1 多次刀具路徑概念 25 4.2 路徑編碼 25 4.2.1 貪婪多次路徑規劃 25 4.2.2 非貪婪多次路徑規劃 27 4.3 結果與分析 28 4.4 曲面分解路徑規劃 34 4.5 誤差估算 35 4.6 曲面分解路徑規劃演算法 35 4.6.1 基於二分法最佳化參數v值 35 4.6.2 基於同步隨機擾動近似演算法調整刀具 37 4.7 結果與分析 40 4.8 小結 47 第五章 基於曲線插補之分割路徑演算法 49 5.1 路徑編碼 50 5.3 分割路徑 51 5.4 停止條件 52 5.5 分割指標 52 5.6 限制式 53 5.7 分割路徑演算法 54 5.8 結果與分析 56 5.9 小結 61 第六章 結論與未來展望 62 6.1 結論 62 6.2 未來展望 62 參考資料 64

    參考資料
    [1] G. B. Vickers and K. W. Guan (2003) “Ball-Mills Versus End-Mills for Curved Surface Machining,” ASME Journal of Engineering for Industry, Vol. 11, pp. 22-26.
    [2] H. K. Tonshoff, C. Gey and N. Rackow (2001) “Flank Milling Optimization – The Flamingo Project,” Air and Space Europe, Vol. 3, No. 3/4, pp. 60-63.
    [3] S. X. Li and R. B. Jerard (1994) “5-Axis Machining of Sculptured Surfaces with a Flat-End Cutter,” Computer-Aided Design, Vol. 26, pp. 165-178.
    [4] B. K. Choi, J. W. Park and C. S. Jun (1993) “Cutter-Location Data Optimization in 5-Axis Surface Machining,” Computer-Aided Design, Vol. 25, pp. 377-386.
    [5] L. Zhua, G. Zheng, H. Ding, and Y. Xiong (2010) “Global Optimization of Tool Path for Five-Axis Flank Milling with a Conical Cutter,” Computer-Aided Design, Vol. 42, pp. 903-910.
    [6] C. Lartigue, E. Duc and A. Affouard (2003) “Tool Path Deformation in Five-Axis Flank Milling Using Envelope Surface,” Computer-Aided Design, Vol. 35, pp. 375-382.
    [7] Q. Bi, L. Zhu, Y. Wang and H. Ding (2003) “Analytical Envelope Surface Representation of a Conical Cutter Undergoing Rational Motion,” The International Journal of Advanced Manufacturing Technology, Vol. 47, pp. 719-730.
    [8] L. Zhu, X. Zhang, G. Zheng, and H. Ding (2009) “Analytical Expression of The Swept Surface of a Rotary Cutter Using the Envelope Theory of Sphere Congruence,” The International Journal of Advanced Manufacturing Technology, Vol. 131, pp. 41017-41024.
    [9] J. Senatore, F. Monies, Y. Landon, and W. Rubio (2007) “Optimising Positioning of The Axis of a Milling Cutter on an Offset Surface by Geometric Error Minimization,” The International Journal of Advanced Manufacturing Technology, Vol. 37, pp. 861-871.
    [10] H. Gong, L. X. Cao and J. Liu (2005) “Improved Positioning of Cylindrical Cutter for Flank Milling Ruled Surfaces,” Computer-Aided Design, Vol. 37, pp. 1205-1213.
    [11] E. L. J. Bohez, S. D. R. Senadhera, K. Pole, J. R. Duflou, and T. Tar (1997) “A Geometric Modeling and Five-Axis Machining Algorithm for Centrifugal Impellers,” Journal of Manufacturing Systems,” Computer-Aided Design, Vol. 16, pp. 422-436.
    [12] X. W. Liu (1995) “Five-axis NC Cylindrical Milling of Sculptured Surfaces,” Computer-Aided Design, Vol. 27, pp. 887-894.
    [13] K. Sprott and B. Ravani (2007) “Cylindrical Milling of Ruled Surfaces,” The International Journal of Advanced Manufacturing Technology, Vol. 38, pp. 649-656.
    [14] J. Senatorea, F. Moniesa, J. M. Redonneta, and W. Rubio (2007) “Improved Positioning for Side Milling of Ruled Surfaces: Analysis of the Rotation Axis's Influence on Machining Error,” International Journal of Machine Tools and Manufacture, Vol. 47, pp. 934-945.
    [15] S. Bedi, S. Mann, Y. Landon, and C. Menzel (2003) “Flank Milling with Flat End Milling Cutters,” Computer-Aided Design, Vol. 35, pp. 293-300.
    [16] C. H. Chu, C. T. Lee, K. W. Tien, and C. J. Ting (2007) “Efficient Tool Path Planning for Five-axis Flank Milling of Ruled Surfaces Using Ant Colony System Algorithms,” Internation Journal of Production Research, Vol. 49, pp. 1557-1574.
    [17] P. H. Wu, Y. W. Li and C. H. Chu (2008) “Optimized Tool Path Generation Based on Dynamic Programming for Five-axis Flank Milling of Rule Surface,” International Journal of Machine Tools and Manufacture, Vol. 48, pp. 1224-1233.
    [18] C. H. Chu and H. T. Hsieh (2010) “Generation of Reciprocating Tool Motion in 5-Axis Flank Milling Based on Particle Swarm Optimization,”Journal of Intelligent Manufacturing.
    [19] H. T. Hsieh and C. H. Chu (2011) “Optimization of Tool Path Planning in 5-Axis Flank Milling of Ruled Surfaces with Improved PSO,” 21th International Conference on Flexible Automation and Intelligent Manufacturing.
    [20] 李宇尉 (2007),基於動態規劃之五軸側銑路徑最佳化,碩士論文,清華大學工業工程與工程管理研究所。
    [21] J. Kennedyand and R. C. Eberhart (1995) “Particle Swarm Optimization,” Proc. IEEE International Conference on Neural Networks, Perth, Australia, 1942–1948.
    [22] D. M. Tsay and M. J. Her (2001) “Accurate 5-Axis Machining of Twisted Ruled Surfaces,” Journal of Manufacturing Science and Engineering, Vol. 123, pp. 731-738
    [23] http://www.cgtech.com/usa/products/about-Vericut/
    [24] http://en.wikipedia.org/wiki/G-code
    [25] http://www.3ds.com/products/catia
    [26] http://en.wikipedia.org/wiki/Bisection_method
    [27] J. C. Spall (1992) “Simultaneous Perturbation Stochastic Approximation,” Proc. IEEE Transactions on Automatic Control, Vol. 37, pp. 332-341
    [28] http://en.wikipedia.org/wiki/De_Casteljau's_algorithm

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE