研究生: |
阮黃明 NGUYEN HOANG MINH |
---|---|
論文名稱: |
Blo t19, a Novel Antimicrobial Peptide Isolated From The House Dust Mite Blomia tropicalis |
指導教授: |
張晃猷
Chang, Hwan-You |
口試委員: |
彭慧玲
Peng, Hwei-Ling 張壯榮 Chang, Chuang-Rung |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 53 |
中文關鍵詞: | 抗菌胜肽 |
外文關鍵詞: | antimicrobial peptide |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
對抗多重抗藥性細菌的新型藥物中,抗菌胜肽的研發在其中扮演著相當重要的角色。抗菌胜肽是由12〜100個氨基酸組成的分子,具有雙極性且帶有正電荷,藉由氨基酸序列與分子結構的不同而能廣泛抑,包含細菌,原蟲,真菌,病毒,甚至腫瘤細胞的生長。大部分抗菌胜肽的作用機轉是經由非專一性機制與細胞的細胞膜表面產生交互作用改變膜的結構,使膜的結構不穩定進而瓦解,最終導致細菌溶解死亡,但在某些情況下也有可能激發先天免疫反應。許多抗菌胜肽已經進入臨床前和臨床試驗,包括治療導管部位感染,囊腫性纖維化,痤瘡,傷口癒合和正在接受幹細胞移植的患者。Blo t19 是一種從熱帶無爪蟎 (Blomia tropicalis) 分離出來的過敏原,同時與豬蛔蟲類抗菌胜肽 (Ascaris suum antibacterial factor,ASABF) 具少許的同源性。本研究的目的是探討Blo t19是否也具有抗菌活性。實驗首先利用大腸桿菌 (Escherichia coli) 系統大量表現重組胜肽Blo t19,本研究分別選用大腸桿菌 BL21和Origami 表達大量的Blo t19再進行純化。實驗結果顯示,雖然重組 Blo t19在大腸桿菌BL21的表現量高於在大腸桿菌Origami的表現量,但Origami表現的 Blo t19卻較BL21所表現的Blo t19具有較高的活性與穩定性,因此後續所有研究將會使用由Origami菌株所表現的 Blo t19。0.4 µg/ml的 Blo t19能夠抑制50% 的綠膿桿菌 (P. aeruginosa) 生長,50 µg/ml 處理2小時則能夠殺死99% 的P. aeruginosa 。其 Blo t19 濃度與抑菌效果間具有正相關的線性關係,但其殺菌活性卻會被氯化鈣抑制。值得注意的是Blo t19 並不會對哺乳動物細胞產生細胞毒性。根據上述的實驗結果,Blo t19抗菌肽有可能發展成為一種不具細 胞毒性的、並致力於治療P. aeruginosa 感染的藥物發展。
Abstract
The discovery of novel antimicrobial peptides plays an important role in the development of new antimicrobials for treatment of multidrug-resistant bacteria. Antimicrobial peptides are relatively small (12 to 100 amino acids), amphipathic, and positively charged molecules of variable length, sequence and structure with activity against a wide range of microorganisms including bacteria, protozoa, fungi, viruses and even tumor cells. They usually act through relatively non-specific mechanisms resulting in membranolysis but can also stimulate innate immune responses. Several antimicrobial peptides have already entered pre-clinical and clinical trials for the treatment of catheter site infections, cystic fibrosis, acne, wound healing and infections in patients undergoing stem cell transplantation. Previously it has been shown that Blo t19 - one of the allergens isolated from Blomia tropicalis exhibits weak homology with a characterized antimicrobial peptide ASABF. The aim of this study is to investigate whether Blo t19 also possesses an antimicrobial activity. In the present study, Blo t19 was overexpressed in E. coli BL21 and Origami strains and purified to homogeneity. Although the expression level of recombinant Blo t19 in E. coli BL21 was higher than in the Origami strain, the Origami-synthesized Blo t19 seemed to be more active and stable than that produced in BL21 and was therefore used for all subsequent studies. Recombinant Blo t19 is able to inhibit 50% of Pseudomonas aeruginosa growth at 0.4 µg/ml and kill 99% of P. aeruginosa at 50 µg/ml in 2 h incubation. The antibacterial activity was dose-dependent and could be inhibited by CaCl2. Moreover, this peptide did not exhibit detectable cytotoxicity to cultured mammalian cells. In conclusion, we demonstrated in this study that Blo t19 is a novel antimicrobial peptide and has the potential to be developed into a new drug for the treatment of P. aeruginosa infections.
References
1. Andersson, D.I. and D. Hughes, Antibiotic resistance and its cost: is it possible to reverse resistance? Nat Rev Microbiol, 2010. 8(4): p. 260-71.
2. Yeaman, M.R. and N.Y. Yount, Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev, 2003. 55(1): p. 27-55.
3. Gandhi, N.R., et al., Multidrug-resistant and extensively drug-resistant tuberculosis: a threat to global control of tuberculosis. Lancet, 2010. 375(9728): p. 1830-43.
4. Shenoi, S. and G. Friedland, Extensively drug-resistant tuberculosis: a new face to an old pathogen. Annu Rev Med, 2009. 60: p. 307-20.
5. Jackson, R.W., et al., Bacterial pathogen evolution: breaking news. Trends Genet, 2011. 27(1): p. 32-40.
6. Muir, A. and M.J. Weinbren, New Delhi metallo-beta-lactamase: a cautionary tale. J Hosp Infect, 2010. 75(3): p. 239-40.
7. Shlaes, D.M., et al., Society for Healthcare Epidemiology of America and Infectious Diseases Society of America Joint Committee on the Prevention of Antimicrobial Resistance: guidelines for the prevention of antimicrobial resistance in hospitals. Infect Control Hosp Epidemiol, 1997. 18(4): p. 275-91.
8. Cars, O., et al., Meeting the challenge of antibiotic resistance. BMJ, 2008. 337: p. a1438.
9. Krause, R.M., The origin of plagues: old and new. Science, 1992. 257(5073): p. 1073-8.
10. Ueno, S., et al., An enhancer peptide for membrane-disrupting antimicrobial peptides. BMC Microbiol, 2010. 10: p. 46.
11. Jenssen, H., P. Hamill, and R.E. Hancock, Peptide antimicrobial agents. Clin Microbiol Rev, 2006. 19(3): p. 491-511.
12. Brogden, K.A., Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol, 2005. 3(3): p. 238-50.
13. Zasloff, M., Antimicrobial peptides of multicellular organisms. Nature, 2002. 415(6870): p. 389-95.
14. Yang, D., O. Chertov, and J.J. Oppenheim, The role of mammalian antimicrobial peptides and proteins in awakening of innate host defenses and adaptive immunity. Cell Mol Life Sci, 2001. 58(7): p. 978-89.
15. Yeung, A.T., S.L. Gellatly, and R.E. Hancock, Multifunctional cationic host defence peptides and their clinical applications. Cell Mol Life Sci, 2011.
16. Kato, Y. and S. Komatsu, ASABF, a novel cysteine-rich antibacterial peptide isolated from the nematode Ascaris suum. Purification, primary structure, and molecular cloning of cDNA. J Biol Chem, 1996. 271(48): p. 30493-8.
17. Perregaux, D.G., et al., Antimicrobial peptides initiate IL-1 beta posttranslational processing: a novel role beyond innate immunity. J Immunol, 2002. 168(6): p. 3024-32.
18. Lorin, C., et al., The antimicrobial peptide dermaseptin S4 inhibits HIV-1 infectivity in vitro. Virology, 2005. 334(2): p. 264-75.
19. Robinson, W.E., Jr., et al., Anti-HIV-1 activity of indolicidin, an antimicrobial peptide from neutrophils. J Leukoc Biol, 1998. 63(1): p. 94-100.
20. Aerts, A.M., et al., The antifungal activity of RsAFP2, a plant defensin from raphanus sativus, involves the induction of reactive oxygen species in Candida albicans. J Mol Microbiol Biotechnol, 2007. 13(4): p. 243-7.
21. Suttmann, H., et al., Antimicrobial peptides of the Cecropin-family show potent antitumor activity against bladder cancer cells. BMC Urol, 2008. 8: p. 5.
22. Schweizer, F., Cationic amphiphilic peptides with cancer-selective toxicity. Eur J Pharmacol, 2009. 625(1-3): p. 190-4.
23. Brown, K.L. and R.E. Hancock, Cationic host defense (antimicrobial) peptides. Curr Opin Immunol, 2006. 18(1): p. 24-30.
24. Mookherjee, N. and R.E. Hancock, Cationic host defence peptides: innate immune regulatory peptides as a novel approach for treating infections. Cell Mol Life Sci, 2007. 64(7-8): p. 922-33.
25. Mookherjee, N., et al., Bovine and human cathelicidin cationic host defense peptides similarly suppress transcriptional responses to bacterial lipopolysaccharide. J Leukoc Biol, 2006. 80(6): p. 1563-74.
26. Epand, R.M. and H.J. Vogel, Diversity of antimicrobial peptides and their mechanisms of action. Biochim Biophys Acta, 1999. 1462(1-2): p. 11-28.
27. Park, C.H., et al., Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J Biol Chem, 2001. 276(11): p. 7806-10.
28. Reddy, K.V., R.D. Yedery, and C. Aranha, Antimicrobial peptides: premises and promises. Int J Antimicrob Agents, 2004. 24(6): p. 536-47.
29. Gkeka, P. and L. Sarkisov, Spontaneous formation of a barrel-stave pore in a coarse-grained model of the synthetic LS3 peptide and a DPPC lipid bilayer. J Phys Chem B, 2009. 113(1): p. 6-8.
30. Ladokhin, A.S., M.E. Selsted, and S.H. White, Bilayer interactions of indolicidin, a small antimicrobial peptide rich in tryptophan, proline, and basic amino acids. Biophys J, 1997. 72(2 Pt 1): p. 794-805.
31. Yang, L., et al., Barrel-stave model or toroidal model? A case study on melittin pores. Biophys J, 2001. 81(3): p. 1475-85.
32. Mangoni, M.L., et al., Effects of the antimicrobial peptide temporin L on cell morphology, membrane permeability and viability of Escherichia coli. Biochem J, 2004. 380(Pt 3): p. 859-65.
33. Pimthon, J., et al., Membrane association and selectivity of the antimicrobial peptide NK-2: a molecular dynamics simulation study. J Pept Sci, 2009. 15(10): p. 654-67.
34. Eckert, R., et al., Adding selectivity to antimicrobial peptides: rational design of a multidomain peptide against Pseudomonas spp. Antimicrob Agents Chemother, 2006. 50(4): p. 1480-8.
35. Vaucher, R.A., M.L. Teixeira, and A. Brandelli, Investigation of the cytotoxicity of antimicrobial peptide P40 on eukaryotic cells. Curr Microbiol, 2010. 60(1): p. 1-5.
36. dos Santos Cabrera, M.P., et al., Selectivity in the mechanism of action of antimicrobial mastoparan peptide Polybia-MP1. Eur Biophys J, 2008. 37(6): p. 879-91.
37. Yount, N.Y. and M.R. Yeaman, Immunocontinuum: perspectives in antimicrobial peptide mechanisms of action and resistance. Protein Pept Lett, 2005. 12(1): p. 49-67.
38. Hancock, R.E. and H.G. Sahl, Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol, 2006. 24(12): p. 1551-7.
39. van Saene, H., et al., Iseganan failure due to the wrong pharmaceutical technology. Chest, 2007. 132(4): p. 1412.
40. Dimarcq, J.L., et al., Cysteine-rich antimicrobial peptides in invertebrates. Biopolymers, 1998. 47(6): p. 465-77.
41. Zhu, S., B. Gao, and J. Tytgat, Phylogenetic distribution, functional epitopes and evolution of the CSalphabeta superfamily. Cell Mol Life Sci, 2005. 62(19-20): p. 2257-69.
42. Ganz, T., Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol, 2003. 3(9): p. 710-20.
43. Minaba, M., et al., Evolution of ASABF (Ascaris suum antibacterial factor)-type antimicrobial peptides in nematodes: putative rearrangement of disulfide bonding patterns. Dev Comp Immunol, 2009. 33(11): p. 1147-50.
44. Zhang, H. and Y. Kato, Common structural properties specifically found in the CSalphabeta-type antimicrobial peptides in nematodes and mollusks: evidence for the same evolutionary origin? Dev Comp Immunol, 2003. 27(6-7): p. 499-503.
45. Pillai, A., et al., Cecropin P1 and novel nematode cecropins: a bacteria-inducible antimicrobial peptide family in the nematode Ascaris suum. Biochem J, 2005. 390(Pt 1): p. 207-14.
46. Kato, Y., et al., abf-1 and abf-2, ASABF-type antimicrobial peptide genes in Caenorhabditis elegans. Biochem J, 2002. 361(Pt 2): p. 221-30.
47. Yi, F.C., et al., Molecular cloning of Blomia tropicalis allergens--a major source of dust mite allergens in the tropics and subtropics. Inflamm Allergy Drug Targets, 2006. 5(4): p. 261-6.
48. Zakzuk, J., et al., Immunological characterization of a Blo t 12 isoallergen: identification of immunoglobulin E epitopes. Clin Exp Allergy, 2009. 39(4): p. 608-16.
49. Chua, K.Y., et al., The Blomia tropicalis allergens. Protein Pept Lett, 2007. 14(4): p. 325-33.
50. Zhang, H., et al., In vitro antimicrobial properties of recombinant ASABF, an antimicrobial peptide isolated from the nematode Ascaris suum. Antimicrob Agents Chemother, 2000. 44(10): p. 2701-5.
51. Rabhi-Essafi, I., et al., A strategy for high-level expression of soluble and functional human interferon alpha as a GST-fusion protein in E. coli. Protein Eng Des Sel, 2007. 20(5): p. 201-9.