簡易檢索 / 詳目顯示

研究生: 林逸松
Lin, Yi Song
論文名稱: 由色散遞增光纖產生高頻譜壓縮比之單及雙峰頻譜分析
Single and Dual-Peak Spectra with High Spectral Compression Ratio in Dispersion-Increasing Fiber
指導教授: 黃承彬
Huang, Chen Bin
口試委員: 盧向成
馮開明
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 35
中文關鍵詞: 色散遞增光纖,頻譜壓縮,光孤子
外文關鍵詞: dispersion increasing fiber, spectral compression, soliton
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 頻譜亮度的提升可藉由雷射頻譜壓縮之方式達成,換言之其方法為在頻譜上將能量進行重新分佈,亦即提高訊雜比,有助於光譜學上的應用與發展性。
    頻譜壓縮為絕熱系統下光孤子脈衝壓縮的反向操作,而在絕熱系統光孤子壓縮的理論下,光纖的條件會限制頻譜壓縮比,但透過超短脈衝作為輸入光源時,光孤子頻譜壓縮比可以超越光纖條件限制的理想值,本論文利用脈衝半高寬度為56 飛秒的脈衝雷射,經由色散遞增光纖成功地產生頻譜壓縮之單及雙峰,單峰的壓縮比達到了101.1倍,雙峰的各別壓縮比也可同時有80倍以上的表現,其遠超越了本實驗室中光纖理想壓縮比的22.5倍。且頻譜單及雙峰的特性,包含其相對振幅與波長得以經由雷射源的平均功率、入射脈衝之啁啾條件調整並做分析,並將實驗結果與非線性薛丁格方程式之數學模型所計算的數值模擬結果進行比對,兩者具有良好的相似性。


    Spectral compression is a way to enhance spectral brightness. On the other hand, the energy is redistribution on the spectrum. It can raise up the signal-to-noise ratio, which is helpful in spectroscopic application.
    Spectral compression is reverse process of adiabatic soliton temporal compression. Nevertheless, the feasibility for spectral compression would be seemingly limited by the dispersion ramp of dispersion-increasing fiber (DIF). But, if the input pulse duration is narrow enough, it would be possible that the real spectral compression ratio (SCR) breakthrough the ideal fiber limitation. Our laser source is 56 femtosecond pulse width. We successfully used it to generate single and dual-peak spectra with high SCR in DIF. SCR of single peak achieved 101.1 times, and SCR of dual-peak severally achieved lager than 80 times at simultaneously. Which the number is beyond ideal ratio of 22.5. Moreover, no matter is single or dual-peak spectra, the relative amplitude and wavelength are tunable. We can adjust it by average power and input pulse chirp condition. Compare to the experimental and simulation results, we could find it has a great agreement.

    摘要 I Abstract III 誌謝 IIIII 目錄 V 圖目錄 VI 第一章 序論 1 1.1 前言 1 1.2 研究背景與動機 2 第二章 光脈衝頻譜壓縮之理論及數值模擬 3 2.1 光孤子特性 3 2.1.1 色散效應(Dispersion) 3 2.1.2 非線性效應─自相位調變(Self-phase modulation, SPM) 5 2.1.3 光孤子的產生與特性 7 2.1.4 數值模擬分析─分步傅立葉法(Split-step Fourier method) 9 2.2絕熱系統之光孤子頻譜壓縮 11 2.2.1 絕熱系統之光孤子頻譜壓縮 11 2.3 脈衝之色散補償 16 2.3.1色散補償光纖(Dispersion Compensating Fiber, DCF) 16 2.4 頻譜壓縮雙峰之產生 17 2.4.1 頻譜壓縮雙峰之產生 17 第三章 頻譜壓縮單峰與雙峰產生之實驗 19 3.1 大頻寬飛秒雷射之頻譜壓縮實驗架構與結果 19 3.2結論 33 第四章 未來展望 34 參考文獻 35

    [1] R. H. Stolen and C. Lin, "Self-phase-modulation in silica optical fibers," Physical Review A, vol. 17, pp. 1448-1453, 1978.
    [2] S. A. Planas, N. L. P. Mansur, C. H. B. Cruz, and H. L. Fragnito, "Spectral narrowing in the propagation of chirped pulses in single-mode fibers " Optics Letters, vol. 18, pp. 699-701, 1993.
    [3] H.-P. Chuang and C.-B. Huang, "Wavelength-tunable spectral compression in a dispersion-increasing fiber, " Optics Letters. vol. 36, 2848-2850, 2011.
    [4] W.-T. Chao, Y.-Y. Lin, J.-L. Peng, and C.-B. Huang, "Waveform-dependent laser spectral compression through pulse propagation in a dispersion-increasing fiber, " Optics Letters, vol. 39, 853-856, 2014.
    [5] Y.-H. Lin, and C.-B. Huang, "Generation of double-peaked laser spectral compression in a dispersion-increasing fiber, " Optics and Photonics Taiwan, 2014.
    [6] A. M. Weiner, Ultrafast Optics, 2009.
    [7] B. E. A. Saleh, and. M. C. Teich, Fundamentals of Photonics: Wiley, 1991.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE