簡易檢索 / 詳目顯示

研究生: 林明顯
Lin, Ming Hsien
論文名稱: 雷射雜訊於非線性光纖傳遞之特性分析
Characterization of Laser Noise Properties in Nonlinear Fibers
指導教授: 黃承彬
Huang, Chen Bin
口試委員: 賴暎杰
Lai Yin Chieh
彭錦龍
Peng Jin Long
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 37
中文關鍵詞: 頻譜壓縮雜訊分析
外文關鍵詞: spectral compression, noise characterization
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於非線性脈衝傳播,雷射雜訊如能量、時間、相位及頻率上的擾動均已在實驗上被詳細分析。我們的結果證明出利用色散遞減光纖達到時域上脈衝壓縮的結果,將降低雷射的本質特性,如上述所提及的雜訊分析。
    另一方面,脈衝在色散遞增光纖傳遞時,造成頻譜壓縮,其結果將導致雷射在絕熱光孤子系統下,及雜訊特性保持原樣,甚至比原本雷射本身好。本文將顯示出以鎖模雷射為光源,改變不同的入射啁啾脈衝,在色散遞增光纖中進行非線性脈衝傳遞前後的特性比較。


    Laser noise properties such as amplitude, timing, phase and frequency jitters as a result of nonlinear pulse propagation are experimentally characterized. Our results show pulse propagation in a dispersion-decreasing fiber (DDF) for pulse temporal compression leads to noise degradation. On the other hand, pulse propagation in a dispersion-increasing fiber (DIF) for spectral compression maintains its noise properties in an adiabatic soliton system. In the numerical analysis, it might be possible that the noise such as an amplitude jitter will never change as propagating in dispersion-increasing fiber (DIF). In the experiment, we show that different input chirped pulses may keep their noise properties with the pulse propagation through the DIF.
    In the calculation, we analyze the amplitude jitter of the fundamental soliton through the single mode fiber (SMF) first and then point out that the same concept is suitable for the DIF. Experimentally, using the mode-locked fiber laser (MLFL) as a source, the laser noise properties will not change as propagating through the DIF in an adiabatic soliton system.

    摘要....................................................................................................I Abstract..............................................................................................II 致謝..................................................................................................III 目錄..................................................................................................VI 圖目錄.............................................................................................VIII 第一章 序論 1 1.1 前言 1 1.2 研究背景與動機 2 第二章 光頻譜壓縮與雷射雜訊特性之理論模擬 3 2.1 光孤子特性 3 2.1.1 色散效應 (Dispersion) 3 2.1.2 非線性效應――自相位調變 (Self-Phase Modulation, SPM) 5 2.1.3 光孤子的產生與特性 7 2.1.4 數值模擬方法 ―― Split-Step Fourier Method (SSFM) 9 2.2 絕熱光孤子系統的頻譜壓縮 11 2.2.1光孤子頻譜壓縮 11 2.3 脈衝色散補償原理 13 2.3.1 色散補償光纖 (Dispersion Compensating Fiber, DCF) 13 2.4雷射雜訊特性理論與模擬 14 2.4.1脈衝能量抖動 (Amplitude Jitter) 14 2.4.2 時域脈衝時間位置抖動 (Timing Jitter) 15 2.4.3 雷射雜訊特性之數學方程式 15 2.4.4相噪 (Phase Noise) 21 2.4.5脈衝能量抖動(Amplitude Jitter)模擬 24 第三章 頻譜壓縮前後之雜訊特性實驗 25 3.1脈衝能量抖動實驗結果 25 3.2時域脈衝時間位置抖動實驗結果 30 3.3結論 34 第四章 未來展望 35 參考文獻 36

    [1] J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Optical properties of high-delta air-silica microstructure optical fibers," Optics Letters, vol. 25, pp. 796-798, Jun 1 2000.
    [2] K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, et al., "Fundamental noise limitations to supercontinuum generation in microstructure fiber," Physical Review Letters, vol. 90, Mar 21 2003.
    [3] S. A. Planas, N. L. P. Mansur, C. H. B. Cruz, and H. L. Fragnito, "Spectral Narrowing in the Propagation of Chirped Pulses in Single-Mode Fibers," Optics Letters, vol. 18, pp. 699-701, May 1 1993.
    [4] M. Oberthaler and R. A. Hopfel, "Special Narrowing of Ultrashort Laser-Pulses by Self-Phase Modulation in Optical Fibers," Applied Physics Letters, vol. 63, pp. 1017-1019, Aug 23 1993.
    [5] C. B. Huang, S. G. Park, D. E. Leaird, and A. M. Weiner, "Nonlinearly broadened phase-modulated continuous-wave laser frequency combs characterized using DPSK decoding," Optics Express, vol. 16, pp. 2520-2527, Feb 18 2008.
    [6] A. M. Weiner, Ultrafast Optics, 2009.
    [7] J. M. Dudley and S. Coen, "Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers," Optics Letters, vol. 27, pp. 1180-1182, Jul 1 2002.
    [8] H. P. Chuang and C. B. Huang, "Wavelength-tunable spectral compression in a dispersion-increasing fiber," Optics Letters, vol. 36, pp. 2848-2850, Aug 1 2011.
    [9] B. E. A. S. M. C. Teich, Fundamentals of Photonics: Wiley, 1991.
    [10] D. von der Linde, "Characterization of the Noise in Continuously Operating Mode-Locked Lasers," Applied Physics B-Photophysics and Laser Chemistry, vol. 39, pp. 201-217, Apr 1986.
    [11] A. Technologies, "Agilent X-series Signal Analyzer," ed.
    [12] V. J. Wittwer, C. A. Zaugg, W. P. Pallmann, A. E. H. Oehler, B. Rudin, M. Hoffmann, et al., "Timing Jitter Characterization of a Free-Running SESAM Mode-locked VECSEL," Ieee Photonics Journal, vol. 3, pp. 658-664, Aug 2011.
    [13] W. T. Chao, Y. Y. Lin, J. L. Peng, and C. B. Huang, "Adiabatic pulse propagation in a dispersion-increasing fiber for spectral compression exceeding the fiber dispersion ratio limitation," Optics Letters, vol. 39, pp. 853-856, Feb 15 2014.
    [14] B. R. Washburn and N. R. Newbury, "Phase, timing, and amplitude noise on supercontinua generated in microstructure fiber," Optics Express, vol. 12, pp. 2166-2175, May 17 2004.
    [15] H. Ludvigsen, M. Tossavainen, and M. Kaivola, "Laser linewidth measurements using self-homodyne detection with short delay," Optics Communications, vol. 155, pp. 180-186, Oct 1 1998.
    [16] F. K. Fatemi, J. W. Lou, and T. F. Carruthers, "Frequency comb linewidth of an actively mode-locked fiber laser," Optics Letters, vol. 29, pp. 944-946, May 1 2004.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE