研究生: |
林偉帆 Wei-Fan Lin |
---|---|
論文名稱: |
SH2B1β 透過促進 FGF1 之訊息傳遞與增加 FGFR1 之表現進而增強 FGF1 所誘導之神經軸突生長 SH2B1β enhances fibroblast growth factor 1(FGF1)-induced neurite outgrowth through promoting FGF1 signaling and increasing FGF receptor 1 expression |
指導教授: |
陳令儀
Linyi Chen |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 80 |
中文關鍵詞: | SH2B1β蛋白 、纖維母細胞生長因子1 、纖維母細胞生長因子接受器1 、大鼠腎上腺髓質嗜鉻細胞瘤 、神經軸突生長 |
外文關鍵詞: | SH2B1β, FGF1, FGFR1, PC12 cells, ERK1/2, STAT3, Egr1, neurite outgrowth |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Fibroblast growth factor 1 (FGF1) has been shown to involve in many biological processes. According to genetic studies, FGF1 signaling and FGF1-induced gene expressions as well as morphological differentiation are important during embryonic development. FGF1 induces neurite outgrowth of the rat pheochromocytorma cells (PC12 cells), and stimulates PC12 cells to differentiate into the sympathetic neuron-like cells. In this thesis, we found that overexpressing a signaling adapter protein, SH2B1β, enhances FGF1-induced neurite outgrowth in PC12 cells. SH2B1β has previously been shown to promote nerve growth factor (NGF) and glial-derived neurotrophic factor (GDNF)-induced neurite outgrowth. Interestingly, SH2B1β prolongs the NGF and GDNF-induced signaling, but not enhances these signalings. In addition, recently studies have suggested that SH2B1β is able to constitutively undergo nucleocytoplasmic shuttling in PC12 cells, revealing its putative role in transcriptional regulation. Along this line, SH2B1β has been shown to enhance the expression of a subset of NGF-responsive genes. To delineate how SH2B1β promotes the FGF1-induced neurite outgrowth in PC12 cells, we examined its role in FGF1 signaling. We demonstrated that SH2B1β, unlike NGF and GDNF-induced signaling, promotes FGF1-induced neurite outgrowth through enhancing and prolonging the MEK-ERK1/2-STAT3 signaling pathway. SH2B1β also enhances the MEK-dependent expression of immediate early gene, Egrl. Moreover, we provided the evidence that overexpression of SH2B1β in PC12 cells results in significant increasing the expression of FGFR1, suggesting that SH2B1β-enhanced neurite outgrowth is mainly via FGFR1. Taken together, these results provide the first evidence that SH2B1β enhances FGF1-induced neurite outgrowth through enhancing FGF1-induced signaling pathway and increasing the gene expression of FGFR1.
纖維母細胞生長因子一 (fibroblast growth factor 1, FGF1) 在細胞的生長發育中是重要的生長因子。從基因層面的相關研究得知,纖維母細胞生長因子之訊息傳遞與其調控之基因表現在胚胎發育過程中扮演極其重要的角色。FGF1會誘導大鼠腎上腺髓質嗜鉻細胞瘤細胞株 (rat pheochromocytoma cell line, 以下簡稱PC12 細胞) 的神經軸突生長 (neurite outgrowth) 進而分化成類交感神經細胞。先前的研究發現一訊息接合蛋白 SH2B1□□會調控神經生長因子 (nerve growth factor, NGF) 與神經膠細胞源神經營養因子 (glial-derived neurotrophic factor, GDNF) 所誘導之神經分化。其中 SH2B1β 會延長 NGF 與 GDNF 所誘導的訊息傳遞,但不會增加訊號的強度。此外 SH2B1β 也被證實能來回穿梭於細胞質與細胞核之間 (nucleocytoplasmic shuttling) 以及調控一些受 NGF 活化之基因的表現。為了進一步研究 SH2B1β 調控神經軸突生長的機制,SH2B1β 被大量表現在 PC12 細胞中。在以 FGF1 處理 PC12 細胞後,SH2B1β 會增強 FGF1 所誘導之訊息傳遞途徑─MEK-ERK1/2-STAT3 的訊號,並且延長其訊號,進而促進 FGF1 誘導 PC12 細胞的神經軸突生長。其中 MEK-ERK1/2-STAT3 的訊號在 FGF1 誘導 PC12 細胞神經軸突生長中是必要的。不僅如此,SH2B1β 也會透過增強 MEK-ERK1/2-STAT3 之訊息途徑,進而增加 MEK-ERK1/2 下游的 immediate early gene─Egr1 的表現。此外在 PC12 細胞中大量表現 SH2B1β 被發現會大量增加纖維母細胞生長因子接受器一 (FGFR1) 的表現量。此結果顯示 SH2B1β 會透過調節 FGFR1 的表現量進而增強 FGF1 誘導的神經軸突生長。總結以上的結果,本論文研究證實了 SH2B1β 會透過調控 FGF1 的訊息傳遞及 FGFR1 的基因表現進而調控 FGF1 所誘導的神經軸突生長。
References
1. Ciruna, B., and Rossant, J. (2001) FGF Signaling Regulates Mesoderm Cell Fate Specification and Morphogenetic Movement at the Primitive Streak. Developmental Cell 1, 37-49
2. Rottinger, E., Saudemont, A., Duboc, V., Besnardeau, L., McClay, D., and Lepage, T. (2008) FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis and regulate gastrulation during sea urchin development. Development 135, 353-365
3. Matus, D. Q., Thomsen, G. H., and Martindale, M. Q. (2007) FGF signaling in gastrulation and neural development in Nematostella vectensis, an anthozoan cnidarian. Dev Genes Evol 217, 137-148
4. Chung, H. A., Hyodo-Miura, J., Nagamune, T., and Ueno, N. (2005) FGF signal regulates gastrulation cell movements and morphology through its target NRH. Dev Biol 282, 95-110
5. Frazzetto, G., Klingbeil, P., and Bouwmeester, T. (2002) Xenopus marginal coil (Xmc), a novel FGF inducible cytosolic coiled-coil protein regulating gastrulation movements. Mech Dev 113, 3-14
6. Streit, A., Berliner, A. J., Papanayotou, C., Sirulnik, A., and Stern, C. D. (2000) Initiation of neural induction by FGF signalling before gastrulation. Nature 406, 74-78
7. Kroll, K. L., and Amaya, E. (1996) Transgenic Xenopus embryos from sperm nuclear transplantations reveal FGF signaling requirements during gastrulation. Development 122, 3173-3183
8. Hebert, J. M., Boyle, M., and Martin, G. R. (1991) mRNA localization studies suggest that murine FGF-5 plays a role in gastrulation. Development 112, 407-415
9. Su, N., Du, X., and Chen, L. (2008) FGF signaling: its role in bone development and human skeleton diseases. Front Biosci 13, 2842-2865
10. Saarimaki-Vire, J., Peltopuro, P., Lahti, L., Naserke, T., Blak, A. A., Vogt Weisenhorn, D. M., Yu, K., Ornitz, D. M., Wurst, W., and Partanen, J. (2007) Fibroblast growth factor receptors cooperate to regulate neural progenitor properties in the developing midbrain and hindbrain. J Neurosci 27, 8581-8592
11. Partanen, J. (2007) FGF signalling pathways in development of the midbrain and anterior hindbrain. J Neurochem 101, 1185-1193
12. Robinson, M. L. (2006) An essential role for FGF receptor signaling in lens development. Semin Cell Dev Biol 17, 726-740
13. Ornitz, D. M. (2005) FGF signaling in the developing endochondral skeleton. Cytokine Growth Factor Rev 16, 205-213
14. Gotoh, N., Manova, K., Tanaka, S., Murohashi, M., Hadari, Y., Lee, A., Hamada, Y., Hiroe, T., Ito, M., Kurihara, T., Nakazato, H., Shibuya, M., Lax, I., Lacy, E., and Schlessinger, J. (2005) The docking protein FRS2alpha is an essential component of multiple fibroblast growth factor responses during early mouse development. Mol Cell Biol 25, 4105-4116
15. Fromigue, O., Modrowski, D., and Marie, P. J. (2005) Apoptosis in membranous bone formation: role of fibroblast growth factor and bone morphogenetic protein signaling. Crit Rev Eukaryot Gene Expr 15, 75-92
16. Chen, L., and Deng, C. X. (2005) Roles of FGF signaling in skeletal development and human genetic diseases. Front Biosci 10, 1961-1976
17. Wright, T. J., and Mansour, S. L. (2003) FGF signaling in ear development and innervation. Curr Top Dev Biol 57, 225-259
18. Poole, T. J., Finkelstein, E. B., and Cox, C. M. (2001) The role of FGF and VEGF in angioblast induction and migration during vascular development. Dev Dyn 220, 1-17
19. Powers, C. J., McLeskey, S. W., and Wellstein, A. (2000) Fibroblast growth factors, their receptors and signaling. Endocrine-Related Cancer 7, 165-197
20. Kato, S., and Sekine, K. (1999) FGF-FGFR signaling in vertebrate organogenesis. Cell Mol Biol 45, 631-638
21. Naski, M. C., and Ornitz, D. M. (1998) FGF signaling in skeletal development. Front Biosci 3, d781-794
22. Del Rio-Tsonis, K., Jung, J. C., Chiu, I. M., and Tsonis, P. A. (1997) Conservation of fibroblast growth factor function in lens regeneration. Proc Natl Acad Sci U S A 94, 13701-13706
23. Kardami, E., Liu, L., Kishore, S., Pasumarthi, B., Doble, B. W., and Cattini, P. A. (1995) Regulation of basic fibroblast growth factor (bFGF) and FGF receptors in the heart. Ann N Y Acad Sci 752, 353-369
24. Niswander, L., Tickle, C., Vogel, A., and Martin, G. (1994) Function of FGF-4 in limb development. Mol Reprod Dev 39, 83-88; discussion 88-89
25. Rydel, R. E., and Greene, L. A. (1987) Acidic and basic fibroblast growth factors promote stable neurite outgrowth and neuronal differentiation in cultures of PC12 cells. J Neurosci 7, 3639-3653
26. Itoh, N. (2007) The Fgf families in humans, mice, and zebrafish: their evolutional processes and roles in development, metabolism, and disease. Biol Pharm Bull 30, 1819-1825
27. Alexander N. Plotnikov, S. R. H., Joseph Schlessinger, Moosa Mohammadi (2000) Crystal Structures of Two FGF-FGFR Complexes Reveal the Determinants of Ligand-Receptor Specificity. Cell 101, 413-424
28. Dono, R. (2003) Fibroblast growth factors as regulators of central nervous system development and function. Am J Physiol Regul Integr Comp Physiol 284, 867-881
29. Quarto, N., and Amalric, F. (1994) Heparan sulfate proteoglycans as transducers of FGF-2 signaling. Journal of Cell Science 107, 3201-3212
30. Shute, J. K., Solic, N., Shimizu, J., McConnell, W., Redington, A. E., and Howarth, P. H. (2004) Epithelial expression and release of FGF-2 from heparan sulphate binding sites in bronchial tissue in asthma. Thorax 59, 557-562
31. Junior, S. O., Kiyota, S., Miranda, M. T. M., Gambarini, A. G., and Viviani, W. (2004) Three-dimensional Model Structure for the Extracellular Domains of Fibroblast Growth Factor Receptor - 1 (FGFR-1). Journal of Molecular Modeling 3, 233-239
32. Bottcher, R. T., and Niehrs, C. (2005) Fibroblast growth factor signaling during early vertebrate development. Endocr Rev 26, 63-77
33. Kan, M., Wang, F., Kan, M., To, B., Gabriel, J. L., and McKeehan, W. L. (1996) Divalent Cations and Heparin/Heparan Sulfate Cooperate to Control Assembly and Activity of the Fibroblast Growth Factor Receptor Complex. The Journal of Biological Chemistry 27, 26143-26148
34. Plotnikov, A. N., Hubbard, S. R., Schlessinger, J., and Mohammadi, M. (2000) Crystal structures of two FGF-FGFR complexes reveal the determinants of ligand-receptor specificity. Cell 101, 413-424
35. Schlessinger, J., Plotnikov, A. N., Ibrahimi, O. A., Eliseenkova, A. V., Yeh, B. K., Yayon, A., Linhardt, R. J., and Mohammadi, M. (2000) Crystal structure of a ternary FGF-FGFR-heparin complex reveals a dual role for heparin in FGFR binding and dimerization. Mol Cell 6, 743-750
36. Lin, X. (2004) Functions of heparan sulfate proteoglycans in cell signaling during development. Development 131, 6009-6021
37. Goodger, S. J., Robinson, C. J., Murphy, K. J., Gasiunas, N., Harmer, N. J., Blundell, T. L., Pye, D. A., and Gallagher, J. T. (2008) Evidence that heparin saccharides promote FGF2 mitogenesis through two distinct mechanisms. J Biol Chem 283, 13001-13008
38. Lu, S. Y., Sheikh, F., Sheppard, P. C., Fresnoza, A., Duckworth, M. L., Detillieux, K. A., and Cattini, P. A. (2008) FGF-16 is required for embryonic heart development. Biochem Biophys Res Commun
39. Lin, X., Buff, E. M., Perrimon, N., and Michelson, A. M. (1999) Heparan sulfate proteoglycans are essential for FGF receptor signaling during Drosophila embryonic development. Development 126, 3715-3723
40. Ezzat, S., and Asa, S. L. (2005) FGF receptor signaling at the crossroads of endocrine homeostasis and tumorigenesis. Horm Metab Res 37, 355-360
41. Shimada, T., Hasegawa, H., Yamazaki, Y., Muto, T., Hino, R., Takeuchi, Y., Fujita, T., Nakahara, K., Fukumoto, S., and Yamashita, T. (2004) FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res 19, 429-435
42. Hokuto, I., Perl, A. K., and Whitsett, J. A. (2004) FGF signaling is required for pulmonary homeostasis following hyperoxia. Am J Physiol Lung Cell Mol Physiol 286, L580-587
43. Alvarez, I. S., Araujo, M., and Nieto, M. A. (1998) Neural induction in whole chick embryo cultures by FGF. Dev Biol 199, 42-54
44. Storey, K. G., Goriely, A., Sargent, C. M., Brown, J. M., Burns, H. D., Abud, H. M., and Heath, J. K. (1998) Early posterior neural tissue is induced by FGF in the chick embryo. Development 125, 473-484
45. Wilson, S. I., Graziano, E., Harland, R., Jessell, T. M., and Edlund, T. (2000) An early requirement for FGF signalling in the acquisition of neural cell fate in the chick embryo. Curr Biol 10, 421-429
46. Brian Ciruna, J. R. (2001) FGF Signaling Regulates Mesoderm Cell Fate Specification and Morphogenetic Movement at the Primitive Streak. Developmental Cell 1, 37-49
47. Shi, E., Kan, M., Xu, J., Wang, F., Hou, J., and McKeehan, W. L. (1993) Control of fibroblast growth factor receptor kinase signal transduction by heterodimerization of combinatorial splice variants. Mol Cell Biol 13, 3907-3918
48. Raffioni, S., Thomas, D., Foehr, E. D., Thompson, L. M., and Bradshaw, R. A. (1999) Comparison of the intracellular signaling responses by three chimeric fibroblast growth factor receptors in PC12 cells. Proc Natl Acad Sci U S A 96, 7178-7183
49. Londin, E. R., Niemiec, J., and Sirotkin, H. I. (2005) Chordin, FGF signaling, and mesodermal factors cooperate in zebrafish neural induction. Dev Biol 279, 1-19
50. Delaune, E., Lemaire, P., and Kodjabachian, L. (2005) Neural induction in Xenopus requires early FGF signalling in addition to BMP inhibition. Development 132, 299-310
51. Hongo, I., Kengaku, M., and Okamoto, H. (1999) FGF signaling and the anterior neural induction in Xenopus. Dev Biol 216, 561-581
52. Mayor, R., Guerrero, N., and Martinez, C. (1997) Role of FGF and noggin in neural crest induction. Dev Biol 189, 1-12
53. Godsave, S. F., and Durston, A. J. (1997) Neural induction and patterning in embryos deficient in FGF signaling. Int J Dev Biol 41, 57-65
54. Launay, C., Fromentoux, V., Shi, D. L., and Boucaut, J. C. (1996) A truncated FGF receptor blocks neural induction by endogenous Xenopus inducers. Development 122, 869-880
55. Tannahill, D., Isaacs, H. V., Close, M. J., Peters, G., and Slack, J. M. (1992) Developmental expression of the Xenopus int-2 (FGF-3) gene: activation by mesodermal and neural induction. Development 115, 695-702
56. Anneren, C., Lindholm, C. K., Kriz, V., and Welsh, M. (2003) The FRK/RAK-SHB signaling cascade: a versatile signal-transduction pathway that regulates cell survival, differentiation and proliferation. Curr Mol Med 3, 313-324
57. Cross, M. J., Lu, L., Magnusson, P., Nyqvist, D., Holmqvist, K., Welsh, M., and Claesson-Welsh, L. (2002) The Shb adaptor protein binds to tyrosine 766 in the FGFR-1 and regulates the Ras/MEK/MAPK pathway via FRS2 phosphorylation in endothelial cells. Mol Biol Cell 13, 2881-2893
58. Kouhara, H., Hadari, Y. R., Spivak-Kroizman, T., Schilling, J., Bar-Sagi, D., Lax, I., and Schlessinger, J. (1997) A lipid-anchored Grb2-binding protein that links FGF-receptor activation to the Ras/MAPK signaling pathway. Cell 89, 693-702
59. Lax, I., Wong, A., Lamothe, B., Lee, A., Frost, A., Hawes, J., and Schlessinger, J. (2002) The docking protein FRS2alpha controls a MAP kinase-mediated negative feedback mechanism for signaling by FGF receptors. Mol Cell 10, 709-719
60. Yamada, S., Taketomi, T., and Yoshimura, A. (2004) Model analysis of difference between EGF pathway and FGF pathway. Biochem Biophys Res Commun 314, 1113-1120
61. Stavridis, M. P., Lunn, J. S., Collins, B. J., and Storey, K. G. (2007) A discrete period of FGF-induced Erk1/2 signalling is required for vertebrate neural specification. Development 134, 2889-2894
62. Ong, S. H., Guy, G. R., Hadari, Y. R., Laks, S., Gotoh, N., Schlessinger, J., and Lax, I. (2000) FRS2 proteins recruit intracellular signaling pathways by binding to diverse targets on fibroblast growth factor and nerve growth factor receptors. Mol Cell Biol 20, 979-989
63. Hall, H., Williams, E. J., Moore, S. E., Walsh, F. S., Prochiantz, A., and Doherty, P. (1996) Inhibition of FGF-stimulated phosphatidylinositol hydrolysis and neurite outgrowth by a cell-membrane permeable phosphopeptide. Curr Biol 6, 580-587
64. Greene, L. A. (1978) Nerve growth factor prevents the death and stimulates the neuronal differentiation of clonal PC12 pheochromocytoma cells in serum-free medium. J Cell Biol 78, 747-755
65. Sofroniew, M. V., Howe, C. L., and Mobley, W. C. (2001) Nerve growth factor signaling, neuroprotection, and neural repair. Annu Rev Neurosci 24, 1217-1281
66. Belia, S., Fulle, S., Antonioli, S., Salvatore, A. M., and Fano, G. (1991) NGF induces activation of phospholipase C (membrane bound) in PC12 cells. Physiol Chem Phys Med NMR 23, 35-41
67. Higuchi, M., Onishi, K., Masuyama, N., and Gotoh, Y. (2003) The phosphatidylinositol-3 kinase (PI3K)-Akt pathway suppresses neurite branch formation in NGF-treated PC12 cells. Genes Cells 8, 657-669
68. Kimura, K., Hattori, S., Kabuyama, Y., Shizawa, Y., Takayanagi, J., Nakamura, S., Toki, S., Matsuda, Y., Onodera, K., and Fukui, Y. (1994) Neurite outgrowth of PC12 cells is suppressed by wortmannin, a specific inhibitor of phosphatidylinositol 3-kinase. J Biol Chem 269, 18961-18967
69. Shibata, A., Laurent, C. E., and Smithgall, T. E. (2003) The c-Fes protein-tyrosine kinase accelerates NGF-induced differentiation of PC12 cells through a PI3K-dependent mechanism. Cell Signal 15, 279-288
70. Szeberenyi, J. (1991) NGF-induced neurite regeneration is mediated by a ras-independent pathway in PC12 cells. Acta Biol Hung 42, 365-369
71. Lee, M. K., Rebhun, L. I., and Frankfurter, A. (1990) Posttranslational modification of class III beta-tubulin. Proc Natl Acad Sci U S A 87, 7195-7199
72. Qian, X., Riccio, A., Zhang, Y., and Ginty, D. D. (1998) Identification and characterization of novel substrates of Trk receptors in developing neurons. Neuron 21, 1017-1029
73. Rui, L., Herrington, J., and Carter-Su, C. (1999) SH2-B is required for nerve growth factor-induced neuronal differentiation. J Biol Chem 274, 10590-10594
74. Zhang, Y., Zhu, W., Wang, Y. G., Liu, X. J., Jiao, L., Liu, X., Zhang, Z. H., Lu, C. L., and He, C. (2006) Interaction of SH2-Bbeta with RET is involved in signaling of GDNF-induced neurite outgrowth. J Cell Sci 119, 1666-1676
75. Riedel, H., Yousaf, N., Zhao, Y., Dai, H., Deng, Y., and Wang, J. (2000) PSM, a mediator of PDGF-BB-, IGF-I-, and insulin-stimulated mitogenesis. Oncogene 19, 39-50
76. Herrington, J., Diakonova, M., Rui, L., Gunter, D. R., and Carter-Su, C. (2000) SH2-B is required for growth hormone-induced actin reorganization. J Biol Chem 275, 13126-13133
77. Rui, L., Mathews, L. S., Hotta, K., Gustafson, T. A., and Carter-Su, C. (1997) Identification of SH2-Bbeta as a substrate of the tyrosine kinase JAK2 involved in growth hormone signaling. Mol Cell Biol 17, 6633-6644
78. Wang, X., Chen, L., Maures, T. J., Herrington, J., and Carter-Su, C. (2004) SH2-B is a positive regulator of nerve growth factor-mediated activation of the Akt/Forkhead pathway in PC12 cells. J Biol Chem 279, 133-141
79. Rui, L., Herrington, J., and Carter-Su, C. (1999) SH2-B, a membrane-associated adapter, is phosphorylated on multiple serines/threonines in response to nerve growth factor by kinases within the MEK/ERK cascade. J Biol Chem 274, 26485-26492
80. Chen, L., and Carter-Su, C. (2004) Adapter protein SH2-B beta undergoes nucleocytoplasmic shuttling: implications for nerve growth factor induction of neuronal differentiation. Mol Cell Biol 24, 3633-3647
81. Chen, L., Maures, T. J., Jin, H., Huo, J. S., Rabbani, S. A., Schwartz, J., and Carter-Su, C. (2008) SH2B1b (SH2-Bb) Enhances Expression of a Subset of Nerve Growth Factor-Regulated Genes Important for Neuronal Differentiation Including Genes Encoding Urokinase Plasminogen Activator Receptor and Matrix Metalloproteinase 3/10. Molecular Endocrinology 22, 454-476
82. Lin, H. Y., Xu, J., Ischenko, I., Ornitz, D. M., Halegoua, S., and Hayman, M. J. (1998) Identification of the cytoplasmic regions of fibroblast growth factor (FGF) receptor 1 which play important roles in induction of neurite outgrowth in PC12 cells by FGF-1. Mol Cell Biol 18, 3762-3770
83. Pollock, J. D., Krempin, M., and Rudy, B. (1990) Differential effects of NGF, FGF, EGF, cAMP, and dexamethasone on neurite outgrowth and sodium channel expression in PC12 cells. J Neurosci 10, 2626-2637
84. Andressen, C., Adrian, S., Fassler, R., Arnhold, S., and Addicks, K. (2005) The contribution of beta1 integrins to neuronal migration and differentiation depends on extracellular matrix molecules. Eur J Cell Biol 84, 973-982
85. Mohammadi, M., Dikic, I., Sorokin, A., Burgess, W. H., Jaye, M., and Schlessinger, J. (1996) Identification of six novel autophosphorylation sites on fibroblast growth factor receptor 1 and elucidation of their importance in receptor activation and signal transduction. Mol Cell Biol 16, 977-989
86. Kong, M., Wang, C. S., and Donoghue, D. J. (2002) Interaction of fibroblast growth factor receptor 3 and the adapter protein SH2-B. A role in STAT5 activation. J Biol Chem 277, 15962-15970
87. Hayashi, H., Ishisaki, A., Suzuki, M., and Imamura, T. (2001) BMP-2 augments FGF-induced differentiation of PC12 cells through upregulation of FGF receptor-1 expression. J Cell Sci 114, 1387-1395
88. Lin, H. Y., Xu, J., Ornitz, D. M., Halegoua, S., and Hayman, M. J. (1996) The fibroblast growth factor receptor-1 is necessary for the induction of neurite outgrowth in PC12 cells by aFGF. J Neurosci 16, 4579-4587
89. Damon, D. H., D'Amore, P. A., and Wagner, J. A. (1990) Nerve growth factor and fibroblast growth factor regulate neurite outgrowth and gene expression in PC12 cells via both protein kinase C- and cAMP-independent mechanisms. J Cell Biol 110, 1333-1339
90. Qui, M. S., and Green, S. H. (1992) PC12 cell neuronal differentiation is associated with prolonged p21ras activity and consequent prolonged ERK activity. Neuron 9, 705-717
91. Renaud, F., Desset, S., Oliver, L., Gimenez-Gallego, G., Van Obberghen, E., Courtois, Y., and Laurent, M. (1996) The neurotrophic activity of fibroblast growth factor 1 (FGF1) depends on endogenous FGF1 expression and is independent of the mitogen-activated protein kinase cascade pathway. J Biol Chem 271, 2801-2811
92. Hirano, T., Ishihara, K., and Hibi, M. (2000) Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors. Oncogene 19, 2548-2556
93. Ihle, J. N., and Kerr, I. M. (1995) Jaks and Stats in signaling by the cytokine receptor superfamily. Trends Genet 11, 69-74
94. Ihle, J. N., Witthuhn, B. A., Quelle, F. W., Yamamoto, K., Thierfelder, W. E., Kreider, B., and Silvennoinen, O. (1994) Signaling by the cytokine receptor superfamily: JAKs and STATs. Trends Biochem Sci 19, 222-227
95. Fu, W. Y., Fu, A. K., Lok, K. C., Ip, F. C., and Ip, N. Y. (2002) Induction of Cdk5 activity in rat skeletal muscle after nerve injury. Neuroreport 13, 243-247
96. Ng, Y. P., Cheung, Z. H., and Ip, N. Y. (2006) STAT3 as a downstream mediator of Trk signaling and functions. J Biol Chem 281, 15636-15644
97. Fu, A. K., Fu, W. Y., Ng, A. K., Chien, W. W., Ng, Y. P., Wang, J. H., and Ip, N. Y. (2004) Cyclin-dependent kinase 5 phosphorylates signal transducer and activator of transcription 3 and regulates its transcriptional activity. Proc Natl Acad Sci U S A 101, 6728-6733
98. Nikolic, M., Dudek, H., Kwon, Y. T., Ramos, Y. F., and Tsai, L. H. (1996) The cdk5/p35 kinase is essential for neurite outgrowth during neuronal differentiation. Genes Dev 10, 816-825
99. Harada, T., Morooka, T., Ogawa, S., and Nishida, E. (2001) ERK induces p35, a neuron-specific activator of Cdk5, through induction of Egr1. Nat Cell Biol 3, 453-459
100. Heim, M. H. (1999) The Jak-STAT pathway: cytokine signalling from the receptor to the nucleus. J Recept Signal Transduct Res 19, 75-120
101. Liu, K. D., Gaffen, S. L., and Goldsmith, M. A. (1998) JAK/STAT signaling by cytokine receptors. Curr Opin Immunol 10, 271-278
102. Leonard, W. J. (2001) Role of Jak kinases and STATs in cytokine signal transduction. Int J Hematol 73, 271-277
103. O'Shea, J. J., Gadina, M., and Schreiber, R. D. (2002) Cytokine signaling in 2002: new surprises in the Jak/Stat pathway. Cell 109 Suppl, S121-131
104. Schuringa, J. J., Schepers, H., Vellenga, E., and Kruijer, W. (2001) Ser727-dependent transcriptional activation by association of p300 with STAT3 upon IL-6 stimulation. FEBS Lett 495, 71-76
105. Sun, W., Snyder, M., Levy, D. E., and Zhang, J. J. (2006) Regulation of Stat3 transcriptional activity by the conserved LPMSP motif for OSM and IL-6 signaling. FEBS Lett 580, 5880-5884
106. Wen, Z., Zhong, Z., and Darnell, J. E., Jr. (1995) Maximal activation of transcription by Stat1 and Stat3 requires both tyrosine and serine phosphorylation. Cell 82, 241-250
107. Liu, Q., Chen, T., Chen, G., Li, N., Wang, J., Ma, P., and Cao, X. (2006) Immunosuppressant triptolide inhibits dendritic cell-mediated chemoattraction of neutrophils and T cells through inhibiting Stat3 phosphorylation and NF-kappaB activation. Biochem Biophys Res Commun 345, 1122-1130
108. Gautron, L., De Smedt-Peyrusse, V., and Laye, S. (2006) Characterization of STAT3-expressing cells in the postnatal rat brain. Brain Res 1098, 26-32
109. Mehta, V. B., Connors, L., Wang, H. C., and Chiu, I. M. (1998) Fibroblast variants nonresponsive to fibroblast growth factor 1 are defective in its nuclear translocation. J Biol Chem 273, 4197-4205
110. Chi, Y., Kumar, T. K., Chiu, I. M., and Yu, C. (2000) 15N NMR relaxation studies of free and ligand-bound human acidic fibroblast growth factor. J Biol Chem 275, 39444-39450
111. Maures, T. J., Kurzer, J. H., and Carter-Su, C. (2007) SH2B1 (SH2-B) and JAK2: a multifunctional adaptor protein and kinase made for each other. Trends Endocrinol Metab 18, 38-45