簡易檢索 / 詳目顯示

研究生: 鄒奉儒
Tsou, Feng-Ju
論文名稱: 多功能碳修飾奈米零價鐵結合一維鈦酸鹽奈米管材料的製備與還原降解三氯乙烯的應用
Fabrication of multifunctional C/ZVI/TNT nanocomposites for the degradation of trichloroethene
指導教授: 董瑞安
Doong, Ruey-an
口試委員: 施養信
吳劍侯
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 158
中文關鍵詞: 三氯乙烯奈米零價鐵鈦酸鹽奈米管複合材料
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,利用奈米複合材料來去除氯化有機物是相當受到重視的新穎處理技術。然而,將奈米零價鐵固定於載體上可有效減少零價鐵顆粒的聚集並進一步提升零價鐵的反應性。因此本研究的主要目的為固定奈米零價鐵於一維鈦酸鹽奈米管上,並進一步碳化修飾奈米零價鐵,以提升複合材料在厭氧環境下對三氯乙烯的去除效率。在複合材料C/nZVI/TNTs合成過程中,針對保護劑添加量、載體添加量、熱分解溫度、熟化時間、碳化氣氛及碳化溫度進行最佳化探討。在最佳化參數條件下所合成之C/nZVI/TNTs複合材料,計算穿透式電子顯微鏡圖中零價鐵在鈦酸鹽奈米管上的平均粒徑為13±1 nm,且顆粒有良好的分散性。以最佳化的C/nZVI/TNTs複合材料應用於厭氧環境下去除三氯乙烯,結果顯示,C/nZVI/TNTs複合材料之擬一階速率常數為傳統零價鐵的3倍。主要係因為碳修飾於奈米零價鐵表面可扮演吸附前濃縮且將反應活性位置周圍三氯乙烯濃度提高,以促使反應加速,另外,反應過程中產生的副產物氯乙烯及二氯乙烯等皆會被碳所吸附,降低二次汙染的可能性。當水溶液中存在微量的重金屬元素時除了可藉由奈米零價鐵還原去除外,亦在TCE的催化反應中扮演雙金屬觸媒的功效,提升分解速率。在本研究中以鈷、銅及鎳的添加,皆有助於提升反應速率,C/nZVI/TNTs複合材料的反應速率常數為1.9×10-3 h-1,而添加適量的鈷、銅及鎳金屬,反應速率常數可分別提升至4.5×10-3、3.54×10-2及6.29 h-1。在不同的觸媒添加量情況下,反應速率隨添加劑量增加而增加,在10 g/L到達最大值6±0.45 h-1,而後繼續增加劑量反應速率持平。另外,在不同汙染物初始濃度之研究結果顯示,反應速率隨初始濃度增加而下降,且反應符合Langmuir-Hinshelwood反應動力。此外,不同水溶液pH值之研究發現C/nZVI/TNTs複合材料在酸性情況下分解三氯乙烯的反應速率較鹼性條件下快。而在鎳鐵雙金屬的汙染物重複添加試驗中顯示,C/nZVI/TNTs複合材料可在五次的反應週期仍然維持100%去除率。本研究成功的製備出C/nZVI/TNTs複合材料並應用於三氯乙烯的分解且具有良好的反應性,鈦酸鹽奈米管的高比表面積及中孔結構在重金屬水溶液亦可扮演了共處理的特性,顯示此多功能性複合材料在環境復育技術上極具有發展潛力。


    Nanoscale zerovalent iron (nZVI) has been widely used for the remediation of contaminated in aquatic environments. However, the intrinsic ferromagnetism of ZVI nanoparticles lead to aggregation and result in the loss of reactivity and mobility. In this study, a facile approach for the synthesis and immobilization of ZVI nanoparticles onto titanate nanotubes (TNTs) has been developed using nonaqueous thermal decomposition method. Several parameters including capping agent concentration, loading amount of TNTs, thermal decomposition temperature, aging time, carbonization/pyrolysis temperature, and carbonization/pyrolysis atmosphere were optimized to obtain C/nZVI/TNTs nanocomposites. Results showed that the nZVI were well-disperse on the surface of TNTs, and the average diameter of the nZVI particles was about 13±1 nm, with Fe core and Fe3O4 shell of 10 and 3 nm, respectively. In addition, the coated carbon on surface of the ZVI nanoparticles not only prevented the aggregation of nZVI but also maintained the reactivity. Moreover, the adsorption of TCE was enhanced when the carbon was coated on C/nZVI/TNTs nanocomposites. Therefore, the synthesized C/nZVI/TNTs can rapidly facilitate the dechlorination reaction by pre-concentrated the TCE in the vicinity of ZVI nanoparticles. The pseudo-first order rate constant (kobs) of TCE dechlorination by C/nZVI/TNTs nanocomposites was 1.9×10-3 h-1, which was 3 times higher than that by conventional ZVI. The degradation of TCE by C/nZVI/TNTs nanocomposites can be significantly enhanced when the second metal ions including Co, Cu , and Ni were introduced. The kobs for TCE dechlorination were 4.5×10-3, 3.54×10-2, and 6.29 h-1 at 4 mM Co(II), 0.7 mM Cu(II), and 4 mM Ni(II), respectively, which was higher than C/nZVI/TNTs nanocomposites alone (1.9×10-3 h-1). The results obtained in this study demonstrate that nZVI with carbon coating were successfully immobilized on to TNTs leads to a potential application in water treatment. The developed technique opens a new avenue to fabricate various multifucntional nanocomposite materials with high specific surface area, high adsorption capacity, and efficient removal ability of TCE in aqueous solutions.

    第一章 簡介 1 1.1. 前言 1 1.2. 研究動機 2 1.3. 研究目的 3 第二章 文獻回顧 4 2.1. 氯化有機物 4 2.2. 奈米零價鐵 5 2.2.1. 奈米零價鐵之特性 6 2.2.2. 奈米零價鐵的製備技術 8 2.2.2.1. 碳熱還原法 9 2.2.2.2. 電解法 10 2.2.2.3. 多酚類植物萃取物 10 2.2.2.4. 熱分解法 11 2.2.3. 奈米零價鐵之水處理應用與反應機制 13 2.2.4. 提高奈米零價鐵反應性 15 2.2.4.1. 雙金屬奈米顆粒 15 2.2.4.2. 熱處理 17 2.2.5. 提高奈米零價鐵之移動性 19 2.2.5.1. 介面活性劑 (Surfactants) 20 2.2.5.2. 聚電解質包覆 (Polyelectrolyte coatings) 21 2.2.5.3. 保護殼層及固體載體 (Protective shells and solid supports) 22 2.3. 一維鈦酸鹽奈米管 22 2.3.1. 一維鈦酸鹽奈米管的製備方法 24 2.3.2. 水熱法影響一維鈦酸鹽奈米管形態之因素 25 2.3.2.1. 前驅物 (鈦源)的影響 25 2.3.2.2. 鹼溶液種類及濃度的影響 26 2.3.2.3. 水熱反應溫度及反應時間的影響 27 2.3.2.4. 酸洗的影響 28 2.3.3. 一維鈦酸鹽奈米管之煅燒改質 29 2.4. 一維鈦酸鹽奈米管之應用 30 2.4.1. 反應催化 31 2.4.2. 光催化 34 2.4.3. 離子交換 36 第三章 研究方法 37 3.1. 實驗架構 37 3.2. 試劑與材料 38 3.3. 一維鈦酸鹽奈米管之製備 (TNTs) 39 3.4. 碳修飾奈米零價鐵結合一維鈦酸鹽奈米管複合材料之製備 (C/nZVI/TNTs) 40 3.5. 特性鑑定 41 3.5.1. 穿透式電子顯微鏡 (Transmission electron microscope, TEM) 43 3.5.2. 比表面積分析儀 (Specific surface area and pore size distribution analyzer, BET) 44 3.5.3. X光粉末繞射儀 (X-ray powder diffractometer, XRPD) 44 3.5.4. 熱重分析儀 (Thermogravimetric Analyzer, TGA) 45 3.5.5. X光光電子能譜儀 (X-ray photoelectron spectroscopy) 46 3.5.6. 感應耦合電漿原子發射光譜儀 (Inductively coupled plasma-optical emission spectrometer, ICP-OES) 47 3.5.7. 元素分析儀 (Elemental analyzer, EA) 47 3.5.8. 電子微探儀 (Electron Probe X-Ray Microanalyzer, EPMA) 48 3.6. 製備無氧水 50 3.7. 三氯乙烯還原脫氯批次實驗 50 3.7.1. 分析方法 51 第四章 結果與討論 53 4.1. 先進一維鈦酸鹽奈米管材料製備 58 4.1.1. 水熱溫度的影響 53 4.2. OLA/nZVI/TNTs製備技術與最適化參數調控 60 4.2.1. 保護劑濃度對奈米複合材料形貌之影響 61 4.2.2 分散載體添加量對奈米複合材料形貌之影響 65 4.2.3. 熱分解溫度對奈米複合材料形貌之影響 68 4.2.4. 熟化時間對奈米複合材料形貌之影響 71 4.3. OLA/nZVI/TNTs複合材料特性鑑定 74 4.4. C/nZVI/TNTs複合材料製備技術與最適化參數調控 77 4.4.1. 碳化/熱裂解氣氛對C/nZVI/TNTs複合材料之影響 79 4.4.2. 碳化/熱裂解溫度對C/nZVI/TNTs複合材料之影響 81 4.5. C/nZVI/TNTs複合材料特性鑑定 87 4.6. 利用C/nZVI/TNTs複合材料對三氯乙烯的催化反應 91 4.7. 共同金屬離子對C/nZVI/TNTs複合材料催化三氯乙烯反應之影響 96 4.7.1. 鈷金屬離子濃度的影響 97 4.7.2. 銅金屬離子濃度的影響 101 4.7.3. 鎳金屬離子濃度的影響 105 4.8 水體環境參數對三氯乙烯還原脫氯反應之影響 113 4.8.1 觸媒濃度之影響 113 4.8.2 汙染物初始濃度之影響 117 4.8.3 pH值效應 123 4.9. C/nZVI/TNTs複合材料的再利用性與穩定性 127 第五章 結論 132 5.1. C/nZVI/TNTs複合材料的製備 132 5.2. C/nZVI/TNTs複合材料之還原脫氯反應 133 第六章 參考文獻 134

    1. Wang, C. B.; Zhang, W. X., Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol 1997, 31, (7), 2154-2156.
    2. Nyer, E. K.; Vance, D. B., Nano-scale iron for dehalogenation. Ground Water Monit R 2001, 21, (2), 41.
    3. Zhang, W. X., Nanoscale iron particles for environmental remediation: An overview. J Nanopart Res 2003, 5, (3-4), 323-332.
    4. Lin, F. H.; Doong, R. A., Bifunctional Au-Fe3O4 heterostructures for magnetically recyclable catalysis of nitrophenol reduction. J Phys Chem C 2011, 115, (14), 6591-6598.
    5. Phenrat, T.; Saleh, N.; Sirk, K.; Tilton, R. D.; Lowry, G. V., Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environ Sci Technol 2007, 41, (1), 284-290.
    6. He, F.; Zhao, D. Y., Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers. Environ Sci Technol 2007, 41, (17), 6216-6221.
    7. Mackenzie, K.; Schierz, A.; Georgi, A.; Kopinke, F. D., Colloidal activated carbon and carbo-iron - Novel materials for in-situ groundwater treatment. Global Nest J 2008, 10, (1), 54-61.
    8. Qiu, X. H.; Fang, Z. Q.; Liang, B.; Gu, F. L.; Xu, Z. C., Degradation of decabromodiphenyl ether by nano zero-valent iron immobilized in mesoporous silica microspheres. J Hazard Mater 2011, 193, 70-81.
    9. Jia, H. Z.; Wang, C. Y., Adsorption and dechlorination of 2,4-dichlorophenol (2,4-DCP) on a multi-functional organo-smectite templated zero-valent iron composite. Chem Eng J 2012, 191, 202-209.
    10. Papa, A. L.; Maurizi, L.; Vandroux, D.; Walker, P.; Millot, N., Synthesis of titanate nanotubes directly coated with USPIO in hydrothermal conditions: A new detectable nanocarrier. J Phys Chem C 2011, 115, (39), 19012-19017.
    11. Doong, R. A.; Kao, I. L., Fabrication and Characterization of nanostructured titanate materials by the hydrothermal treatment method. Recent Pat Nanotech 2008, 2, (2), 84-102.
    12. Jortner, J.; Rao, C. N. R., Nanostructured advanced materials. Perspectives and directions. Pure Appl Chem 2002, 74, (9), 1491-1506.
    13. Panacek, A.; Kvitek, L.; Prucek, R.; Kolar, M.; Vecerova, R.; Pizurova, N.; Sharma, V. K.; Nevecna, T.; Zboril, R., Silver colloid nanoparticles: Synthesis, characterization, and their antibacterial activity. J Phys Chem B 2006, 110, (33), 16248-16253.
    14. Masciangioli, T.; Zhang, W. X., Environmental technologies at the nanoscale. Environ Sci Technol 2003, 37, (5), 102a-108a.
    15. AshaRani, P. V.; Mun, G. L. K.; Hande, M. P.; Valiyaveettil, S., Cytotoxicity and genotoxicity of silver nanoparticles in human cells. Acs Nano 2009, 3, (2), 279-290.
    16. Noubactep, C., A critical review on the process of contaminant removal in Fe0-H2O systems. Environ Technol 2008, 29, (8), 909-920.
    17. Crane, R. A.; Dickinson, M.; Popescu, I. C.; Scott, T. B., Magnetite and zero-valent iron nanoparticles for the remediation of uranium contaminated environmental water. Water Res 2011, 45, (9), 2931-2942.
    18. Scott, T. B.; Dickinson, M.; Crane, R. A.; Riba, O.; Hughes, G. M.; Allen, G. C., The effects of vacuum annealing on the structure and surface chemistry of iron nanoparticles. J Nanopart Res 2010, 12, (5), 1765-1775.
    19. Nurmi, J. T.; Tratnyek, P. G.; Sarathy, V.; Baer, D. R.; Amonette, J. E.; Pecher, K.; Wang, C. M.; Linehan, J. C.; Matson, D. W.; Penn, R. L.; Driessen, M. D., Characterization and properties of metallic iron nanoparticles: Spectroscopy, electrochemistry, and kinetics. Environ Sci Technol 2005, 39, (5), 1221-1230.
    20. Sun, Y. P.; Li, X. Q.; Cao, J. S.; Zhang, W. X.; Wang, H. P., Characterization of zero-valent iron nanoparticles. Adv Colloid Interfac 2006, 120, (1-3), 47-56.
    21. Hoch, L. B.; Mack, E. J.; Hydutsky, B. W.; Hershman, J. M.; Skluzacek, I. M.; Mallouk, T. E., Carbothermal synthesis of carbon-supported nanoscale zero-valent iron particles for the remediation of hexavalent chromium. Environ Sci Technol 2008, 42, (7), 2600-2605.
    22. Hoag, G. E.; Collins, J. B.; Holcomb, J. L.; Hoag, J. R.; Nadagouda, M. N.; Varma, R. S., Degradation of bromothymol blue by 'greener' nano-scale zero-valent iron synthesized using tea polyphenols. J Mater Chem 2009, 19, (45), 8671-8677.
    23. Bystrzejewski, M., Synthesis of carbon-encapsulated iron nanoparticles via solid state reduction of iron oxide nanoparticles. J Solid State Chem 2011, 184, (6), 1492-1498.
    24. Chen, S. S.; Hsu, H. D.; Li, C. W., A new method to produce nanoscale iron for nitrate removal. J Nanopart Res 2004, 6, (6), 639-647.
    25. Wang, T.; Hu, J. S.; Yang, W.; Zhang, H. M., Electrodeposition of monodispersed metal nanoparticles in a nafion film: Towards highly active nanocatalysts. Electrochem Commun 2008, 10, (5), 814-817.
    26. Murray, C. B.; Norris, D. J.; Bawendi, M. G., Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J Am Chem Soc 1993, 115, (19), 8706-8715.
    27. O'Brien, S.; Brus, L.; Murray, C. B., Synthesis of monodisperse nanoparticles of barium titanate: Toward a generalized strategy of oxide nanoparticle synthesis. J Am Chem Soc 2001, 123, (48), 12085-12086.
    28. Park, J.; An, K. J.; Hwang, Y. S.; Park, J. G.; Noh, H. J.; Kim, J. Y.; Park, J. H.; Hwang, N. M.; Hyeon, T., Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 2004, 3, (12), 891-895.
    29. Sun, S. H.; Zeng, H.; Robinson, D. B.; Raoux, S.; Rice, P. M.; Wang, S. X.; Li, G. X., Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J Am Chem Soc 2004, 126, (1), 273-279.
    30. Redl, F. X.; Black, C. T.; Papaefthymiou, G. C.; Sandstrom, R. L.; Yin, M.; Zeng, H.; Murray, C. B.; O'Brien, S. P., Magnetic, electronic, and structural characterization of nonstoichiometric iron oxides at the nanoscale. J Am Chem Soc 2004, 126, (44), 14583-14599.
    31. Rockenberger, J.; Scher, E. C.; Alivisatos, A. P., A new nonhydrolytic single-precursor approach to surfactant-capped nanocrystals of transition metal oxides. J Am Chem Soc 1999, 121, (49), 11595-11596.
    32. Farrell, D.; Majetich, S. A.; Wilcoxon, J. P., Preparation and characterization of monodisperse Fe nanoparticles. J Phys Chem B 2003, 107, (40), 11022-11030.
    33. Jana, N. R.; Chen, Y. F.; Peng, X. G., Size- and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach. Chem Mater 2004, 16, (20), 3931-3935.
    34. Samia, A. C. S.; Hyzer, K.; Schlueter, J. A.; Qin, C. J.; Jiang, J. S.; Bader, S. D.; Lin, X. M., Ligand effect on the growth and the digestion of co nanocrystals. J Am Chem Soc 2005, 127, (12), 4126-4127.
    35. Li, Y.; Afzaal, M.; O'Brien, P., The synthesis of amine-capped magnetic (Fe, Mn, Co, Ni) oxide nanocrystals and their surface modification for aqueous dispersibility. J Mater Chem 2006, 16, (22), 2175-2180.
    36. Huber, D. L., Synthesis, properties, and applications of iron nanoparticles. Small 2005, 1, (5), 482-501.
    37. Kura, H.; Takahashi, M.; Ogawa, T., Synthesis of monodisperse iron nanoparticles with a high saturation magnetization using an Fe(CO)x-oleylamine reacted precursor. J Phys Chem C 2010, 114, (13), 5835-5838.
    38. Shao, H. P.; Lee, H.; Huang, Y. Q.; Ko, I. Y.; Kim, C., Control of iron nanoparticles size and shape by thermal decomposition method. Ieee T Magn 2005, 41, (10), 3388-3390.
    39. Glavee, G. N.; Klabunde, K. J.; Sorensen, C. M.; Hadjipanayis, G. C., Chemistry of borohydride reduction of iron(II) and iron(III) ions in aqueous and nonaqueous media - Formation of nanoscale Fe, FeB, and Fe2B powders. Inorg Chem 1995, 34, (1), 28-35.
    40. Ghauch, A.; Tuqan, A.; Assia, H. A., Antibiotic removal from water: Elimination of amoxicillin and ampicillin by microscale and nanoscale iron particles. Environ Pollut 2009, 157, (5), 1626-1635.
    41. Fang, Z. Q.; Chen, J. H.; Qiu, X. H.; Qiu, X. Q.; Cheng, W.; Zhu, L. C., Effective removal of antibiotic metronidazole from water by nanoscale zero-valent iron particles. Desalination 2011, 268, (1-3), 60-67.
    42. Fan, J.; Guo, Y. H.; Wang, J. J.; Fan, M. H., Rapid decolorization of azo dye methyl orange in aqueous solution by nanoscale zerovalent iron particles. J Hazard Mater 2009, 166, (2-3), 904-910.
    43. Lin, Y. T.; Weng, C. H.; Chen, F. Y., Effective removal of AB24 dye by nano/micro-size zero-valent iron. Sep Purif Technol 2008, 64, (1), 26-30.
    44. Lien, H. L.; Zhang, W. X., Transformation of chlorinated methanes by nanoscale iron particles. J Environ Eng-Asce 1999, 125, (11), 1042-1047.
    45. Choe, S.; Lee, S. H.; Chang, Y. Y.; Hwang, K. Y.; Khim, J., Rapid reductive destruction of hazardous organic compounds by nanoscale Fe0. Chemosphere 2001, 42, (4), 367-372.
    46. Liu, Y. Q.; Majetich, S. A.; Tilton, R. D.; Sholl, D. S.; Lowry, G. V., TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environ Sci Technol 2005, 39, (5), 1338-1345.
    47. Elliott, D. W.; Lien, H. L.; Zhang, W. X., Degradation of lindane by zero-valent iron nanoparticles. J Environ Eng-Asce 2009, 135, (5), 317-324.
    48. Tian, H.; Li, J. J.; Mu, Z.; Li, L. D.; Hao, Z. P., Effect of pH on DDT degradation in aqueous solution using bimetallic Ni/Fe nanoparticles. Sep Purif Technol 2009, 66, (1), 84-89.
    49. Joo, S. H.; Zhao, D., Destruction of lindane and atrazine using stabilized iron nanoparticles under aerobic and anaerobic conditions: Effects of catalyst and stabilizer. Chemosphere 2008, 70, (3), 418-425.
    50. Satapanajaru, T.; Anurakpongsatorn, P.; Pengthamkeerati, P.; Boparai, H., Remediation of atrazine-contaminated soil and water by nano zerovalent iron. Water Air Soil Poll 2008, 192, (1-4), 349-359.
    51. Ambashta, R. D.; Repo, E.; Sillanpaa, M., Degradation of tributyl phosphate using nanopowders of iron and iron-nickel under the influence of a static magnetic field. Ind Eng Chem Res 2011, 50, (21), 11771-11777.
    52. Naja, G.; Halasz, A.; Thiboutot, S.; Ampleman, G.; Hawari, J., Degradation of hexahydro-1,3,5-trinitro-1,15-triazine (RDX) using zerovalent iron nanoparticles. Environ Sci Technol 2008, 42, (12), 4364-4370.
    53. Zhang, X.; Lin, Y. M.; Chen, Z. L., 2,4,6-Trinitrotoluene reduction kinetics in aqueous solution using nanoscale zero-valent iron. J Hazard Mater 2009, 165, (1-3), 923-927.
    54. Zhang, X.; Lin, Y. M.; Shan, X. Q.; Chen, Z. L., Degradation of 2,4,6-trinitrotoluene (TNT) from explosive wastewater using nanoscale zero-valent iron. Chem Eng J 2010, 158, (3), 566-570.
    55. Cheng, R.; Wang, J. L.; Zhang, W. X., Comparison of reductive dechlorination of p-chlorophenol using Fe0 and nanosized Fe0. J Hazard Mater 2007, 144, (1-2), 334-339.
    56. Li, A.; Tai, C.; Zhao, Z. S.; Wang, Y. W.; Zhang, Q. H.; Jiang, G. B.; Hu, J. T., Debromination of decabrominated diphenyl ether by resin-bound iron nanoparticles. Environ Sci Technol 2007, 41, (19), 6841-6846.
    57. Shih, Y. H.; Tai, Y. T., Reaction of decabrominated diphenyl ether by zerovalent iron nanoplarticles. Chemosphere 2010, 78, (10), 1200-1206.
    58. Varanasi, P.; Fullana, A.; Sidhu, S., Remediation of PCB contaminated soils using iron nano-particles. Chemosphere 2007, 66, (6), 1031-1038.
    59. Choe, S.; Chang, Y. Y.; Hwang, K. Y.; Khim, J., Kinetics of reductive denitrification by nanoscale zero-valent iron. Chemosphere 2000, 41, (8), 1307-1311.
    60. Wang, W.; Jin, Z. H.; Li, T. L.; Zhang, H.; Gao, S., Preparation of spherical iron nanoclusters in ethanol-water solution for nitrate removal. Chemosphere 2006, 65, (8), 1396-1404.
    61. Xiong, Z.; Zhao, D. Y.; Pan, G., Rapid and complete destruction of perchlorate in water and ion-exchange brine using stabilized zero-valent iron nanoparticles. Water Res 2007, 41, (15), 3497-3505.
    62. Celebi, O.; Uzum, C.; Shahwan, T.; Erten, H. N., A radiotracer study of the adsorption behavior of aqueous Ba2+ ions on nanoparticles of zero-valent iron. J Hazard Mater 2007, 148, (3), 761-767.
    63. Klimkova, S.; Cernik, M.; Lacinova, L.; Filip, J.; Jancik, D.; Zboril, R., Zero-valent iron nanoparticles in treatment of acid mine water from in situ uranium leaching. Chemosphere 2011, 82, (8), 1178-1184.
    64. Xu, Y. H.; Zhao, D. Y., Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles. Water Res 2007, 41, (10), 2101-2108.
    65. Ponder, S. M.; Darab, J. G.; Bucher, J.; Caulder, D.; Craig, I.; Davis, L.; Edelstein, N.; Lukens, W.; Nitsche, H.; Rao, L. F.; Shuh, D. K.; Mallouk, T. E., Surface chemistry and electrochemistry of supported zerovalent iron nanoparticles in the remediation of aqueous metal contaminants. Chem Mater 2001, 13, (2), 479-486.
    66. Scott, T. B.; Popescu, I. C.; Crane, R. A.; Noubactep, C., Nano-scale metallic iron for the treatment of solutions containing multiple inorganic contaminants. J Hazard Mater 2011, 186, (1), 280-287.
    67. Uzum, C.; Shahwan, T.; Eroglu, A. E.; Lieberwirth, I.; Scott, T. B.; Hallam, K. R., Application of zero-valent iron nanoparticles for the removal of aqueous Co2+ ions under various experimental conditions. Chem Eng J 2008, 144, (2), 213-220.
    68. Li, X. Q.; Zhang, W. X., Sequestration of metal cations with zerovalent iron nanoparticles - A study with high resolution X-ray photoelectron spectroscopy (HR-XPS). J Phys Chem C 2007, 111, (19), 6939-6946.
    69. Karabelli, D.; Uzum, C.; Shahwan, T.; Eroglu, A. E.; Scott, T. B.; Hallam, K. R.; Lieberwirth, I., Batch removal of aqueous Cu2+ ions using nanoparticles of zero-valent iron: A study of the capacity and mechanism of uptake. Ind Eng Chem Res 2008, 47, (14), 4758-4764.
    70. Darab, J. G.; Amonette, A. B.; Burke, D. S. D.; Orr, R. D.; Ponder, S. M.; Schrick, B.; Mallouk, T. E.; Lukens, W. W.; Caulder, D. L.; Shuh, D. K., Removal of pertechnetate from simulated nuclear waste streams using supported zerovalent iron. Chem Mater 2007, 19, (23), 5703-5713.
    71. Burghardt, D.; Simon, E.; Knoller, K.; Kassahun, A., Immobilization of uranium and arsenic by injectible iron and hydrogen stimulated autotrophic sulphate reduction. J Contam Hydrol 2007, 94, (3-4), 305-314.
    72. Kanel, S. R.; Greneche, J. M.; Choi, H., Arsenic(V) removal kom groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environ Sci Technol 2006, 40, (6), 2045-2050.
    73. Kanel, S. R.; Manning, B.; Charlet, L.; Choi, H., Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environ Sci Technol 2005, 39, (5), 1291-1298.
    74. Kanel, S. R.; Nepal, D.; Manning, B.; Choi, H., Transport of surface-modified iron nanoparticle in porous media and application to arsenic(III) remediation. J Nanopart Res 2007, 9, (5), 725-735.
    75. Olegario, J. T.; Yee, N.; Miller, M.; Sczepaniak, J.; Manning, B., Reduction of Se(VI) to Se(-II) by zerovalent iron nanoparticle suspensions. J Nanopart Res 2010, 12, (6), 2057-2068.
    76. Dickinson, M.; Scott, T. B., The application of zero-valent iron nanoparticles for the remediation of a uranium-contaminated waste effluent. J Hazard Mater 2010, 178, (1-3), 171-179.
    77. Riba, O.; Scott, T. B.; Ragnarsdottir, K. V.; Allen, G. C., Reaction mechanism of uranyl in the presence of zero-valent iron nanoparticles. Geochim Cosmochim Ac 2008, 72, (16), 4047-4057.
    78. Dickinson, M.; Scott, T. B., The effect of vacuum annealing on the remediation abilities of iron and iron-nickel nanoparticles. J Nanopart Res 2011, 13, (9), 3699-3711.
    79. Miehr, R.; Tratnyek, P. G.; Bandstra, J. Z.; Scherer, M. M.; Alowitz, M. J.; Bylaska, E. J., Diversity of contaminant reduction reactions by zerovalent iron: Role of the reductate. Environ Sci Technol 2004, 38, (1), 139-147.
    80. Elliott, D. W.; Zhang, W. X., Field assessment of nanoscale biometallic particles for groundwater treatment. Environ Sci Technol 2001, 35, (24), 4922-4926.
    81. Zhang, W. X.; Wang, C. B.; Lien, H. L., Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catal Today 1998, 40, (4), 387-395.
    82. Lien, H. L.; Zhang, W. X., Hydrodechlorination of chlorinated ethanes by nanoscale Pd/Fe bimetallic particles. J Environ Eng-Asce 2005, 131, (1), 4-10.
    83. Lien, H. L.; Zhang, W. X., Nanoscale Pd/Fe bimetallic particles: Catalytic effects of palladium on hydrodechlorination. Appl Catal B-Environ 2007, 77, (1-2), 110-116.
    84. Xu, Y.; Zhang, W. X., Subcolloidal Fe/Ag particles for reductive dehalogenation of chlorinated benzenes. Ind Eng Chem Res 2000, 39, (7), 2238-2244.
    85. Schrick, B.; Blough, J. L.; Jones, A. D.; Mallouk, T. E., Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoparticles. Chem Mater 2002, 14, (12), 5140-5147.
    86. Tee, Y. H.; Bachas, L.; Bhattacharyya, D., Degradation of trichloroethylene and dichlorobiphenyls by iron-based bimetallic nanoparticles. J Phys Chem C 2009, 113, (22), 9454-9464.
    87. Barnes, R. J.; Riba, O.; Gardner, M. N.; Scott, T. B.; Jackman, S. A.; Thompson, I. P., Optimization of nano-scale nickel/iron particles for the reduction of high concentration chlorinated aliphatic hydrocarbon solutions. Chemosphere 2010, 79, (4), 448-454.
    88. Barnes, R. J.; Riba, O.; Gardner, M. N.; Singer, A. C.; Jackman, S. A.; Thompson, I. P., Inhibition of biological TCE and sulphate reduction in the presence of iron nanoparticles. Chemosphere 2010, 80, (5), 554-562.
    89. Xiu, Z. M.; Jin, Z. H.; Li, T. L.; Mahendra, S.; Lowry, G. V.; Alvarez, P. J. J., Effects of nano-scale zero-valent iron particles on a mixed culture dechlorinating trichloroethylene. Bioresource Technol 2010, 101, (4), 1141-1146.
    90. Moura, F. C. C.; Oliveira, G. C.; Araujo, M. H.; Ardisson, J. D.; Macedo, W. A. D.; Lago, R. M., Formation of highly reactive species at the interface Fe degrees-iron oxides particles by mechanical alloying and thermal treatment: Potential application in environmental remediation processes. Chem Lett 2005, 34, (8), 1172-1173.
    91. Cui, H. T.; Feng, Y. M.; Ren, W. Z.; Zeng, T.; Lv, H. Y.; Pan, Y. F., Strategies of large scale synthesis of monodisperse nanoparticles. Recent Pat Nanotech 2009, 3, (1), 32-41.
    92. Schrick, B.; Hydutsky, B. W.; Blough, J. L.; Mallouk, T. E., Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chem Mater 2004, 16, (11), 2187-2193.
    93. Kanel, S. R.; Goswami, R. R.; Clement, T. P.; Barnett, M. O.; Zhao, D., Two dimensional transport characteristics of surface stabilized zero-valent iron nanoparticles in porous media. Environ Sci Technol 2008, 42, (3), 896-900.
    94. Logan, B. E.; Camesano, T. A.; DeSantis, A. A.; Unice, K. M.; Baygents, J. C., Comment on "A method for calculating bacterial deposition coefficients using the fraction of bacteria recovered from laboratory columns". Environ Sci Technol 1999, 33, (8), 1316-1317.
    95. Saleh, N.; Sarbu, T.; Sirk, K.; Lowry, G. V.; Matyjaszewski, K.; Tilton, R. D., Oil-in-water emulsions stabilized by highly charged polyelectrolyte-grafted silica nanoparticles. Langmuir 2005, 21, (22), 9873-9878.
    96. Phenrat, T.; Kim, H. J.; Fagerlund, F.; Illangasekare, T.; Tilton, R. D.; Lowry, G. V., Particle size distribution, concentration, and magnetic attraction affect transport of polymer-modified Fe-0 nanoparticles in sand columns. Environ Sci Technol 2009, 43, (13), 5079-5085.
    97. Sirk, K. M.; Saleh, N. B.; Phenrat, T.; Kim, H. J.; Dufour, B.; Ok, J.; Golas, P. L.; Matyjaszewski, K.; Lowry, G. V.; Tilton, R. D., Effect of adsorbed polyelectrolytes on nanoscale zero valent iron particle attachment to soil surface models. Environ Sci Technol 2009, 43, (10), 3803-3808.
    98. He, F.; Zhao, D. Y.; Paul, C., Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones. Water Res 2010, 44, (7), 2360-2370.
    99. Phenrat, T.; Saleh, N.; Sirk, K.; Kim, H. J.; Tilton, R. D.; Lowry, G. V., Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation. J Nanopart Res 2008, 10, (5), 795-814.
    100. Tiraferri, A.; Chen, K. L.; Sethi, R.; Elimelech, M., Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum. J Colloid Interf Sci 2008, 324, (1-2), 71-79.
    101. Hydutsky, B. W.; Mack, E. J.; Beckerman, B. B.; Skluzacek, J. M.; Mallouk, T. E., Optimization of nano- and microiron transport through sand columns using polyelectrolyte mixtures. Environ Sci Technol 2007, 41, (18), 6418-6424.
    102. Wang, X. Y.; Lee, B. I.; Mann, L., Dispersion of barium titanate with polyaspartic acid in aqueous media. Colloid Surface A 2002, 202, (1), 71-80.
    103. Sun, Y. P.; Li, X. Q.; Zhang, W. X.; Wang, H. P., A method for the preparation of stable dispersion of zero-valent iron nanoparticles. Colloid Surface A 2007, 308, (1-3), 60-66.
    104. Saleh, N.; Phenrat, T.; Sirk, K.; Dufour, B.; Ok, J.; Sarbu, T.; Matyiaszewski, K.; Tilton, R. D.; Lowry, G. V., Adsorbed triblock copolymers deliver reactive iron nanoparticles to the oil/water interface. Nano Lett 2005, 5, (12), 2489-2494.
    105. Comba, S.; Sethi, R., Stabilization of highly concentrated suspensions of iron nanoparticles using shear-thinning gels of xanthan gum. Water Res 2009, 43, (15), 3717-3726.
    106. Wang, Y. H.; Wei, W.; Maspoch, D.; Wu, J. S.; Dravid, V. P.; Mirkin, C. A., Superparamagnetic Sub-5 nm Fe@C nanoparticles: Isolation, structure, magnetic properties, and directed assembly. Nano Lett 2008, 8, (11), 3761-3765.
    107. Terris, B. D.; Thomson, T., Nanofabricated and self-assembled magnetic structures as data storage media. J Phys D Appl Phys 2005, 38, (12), R199-R222.
    108. Lee, J. H.; Huh, Y. M.; Jun, Y.; Seo, J.; Jang, J.; Song, H. T.; Kim, S.; Cho, E. J.; Yoon, H. G.; Suh, J. S.; Cheon, J., Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med 2007, 13, (1), 95-99.
    109. Li, G. X.; Joshi, V.; White, R. L.; Wang, S. X.; Kemp, J. T.; Webb, C.; Davis, R. W.; Sun, S. H., Detection of single micron-sized magnetic bead and magnetic nanoparticles using spin valve sensors for biological applications. J Appl Phys 2003, 93, (10), 7557-7559.
    110. Tang, N. J.; Chen, W.; Zhong, W.; Jiang, H. Y.; Huang, S. L.; Du, Y. W., Highly stable carbon-coated Fe/SiO2 composites: Synthesis, structure and magnetic properties. Carbon 2006, 44, (3), 423-427.
    111. Wilson, J. L.; Poddar, P.; Frey, N. A.; Srikanth, H.; Mohomed, K.; Harmon, J. P.; Kotha, S.; Wachsmuth, J., Synthesis and magnetic properties of polymer nanocomposites with embedded iron nanoparticles. J Appl Phys 2004, 95, (3), 1439-1443.
    112. Zhang, D.; Wei, S. Y.; Kaila, C.; Su, X.; Wu, J.; Karki, A. B.; Young, D. P.; Guo, Z. H., Carbon-stabilized iron nanoparticles for environmental remediation. Nanoscale 2010, 2, (6), 917-919.
    113. Zhan, J. J.; Kolesnichenko, I.; Sunkara, B.; He, J. B.; McPherson, G. L.; Piringer, G.; John, V. T., Multifunctional iron-carbon nanocomposites through an aerosol-based process for the in situ remediation of chlorinated hydrocarbons. Environ Sci Technol 2011, 45, (5), 1949-1954.
    114. Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K., Formation of titanium oxide nanotube. Langmuir 1998, 14, (12), 3160-3163.
    115. Papa, A. L.; Millot, N.; Saviot, L.; Chassagnon, R.; Heintz, O., Effect of reaction parameters on composition and morphology of titanate nanomaterials. J Phys Chem C 2009, 113, (29), 12682-12689.
    116. Yuan, Z. Y.; Su, B. L., Titanium oxide nanotubes, nanofibers and nanowires. Colloid Surface A 2004, 241, (1-3), 173-183.
    117. Bavykin, D. V.; Walsh, F. C., Elongated titanate nanostructures and their applications. Eur J Inorg Chem 2009, (8), 977-997.
    118. Hoyer, P., Formation of a titanium dioxide nanotube array. Langmuir 1996, 12, (6), 1411-1413.
    119. Kobayashi, S.; Hanabusa, K.; Hamasaki, N.; Kimura, M.; Shirai, H.; Shinkai, S., Preparation of TiO(2) hollow-fibers using supramolecular assemblies. Chem Mater 2000, 12, (6), 1523.
    120. Chen, Q.; Zhou, W. Z.; Du, G. H.; Peng, L. M., Trititanate nanotubes made via a single alkali treatment. Adv Mater 2002, 14, (17), 1208.
    121. Doong, R. A.; Tsai, C. W.; Liao, C. I., Coupled removal of bisphenol A and copper ion by titanate nanotubes fabricated at different calcination temperatures. Sep Purif Technol 2012, 91, 81-88.
    122. Sun, X. M.; Li, Y. D., Synthesis and characterization of ion-exchangeable titanate nanotubes. Chem-Eur J 2003, 9, (10), 2229-2238.
    123. Ma, R. Z.; Bando, Y.; Sasaki, T., Nanotubes of lepidocrocite titanates. Chem Phys Lett 2003, 380, (5-6), 577-582.
    124. Yang, J. J.; Jin, Z. S.; Wang, X. D.; Li, W.; Zhang, J. W.; Zhang, S. L.; Guo, X. Y.; Zhang, Z. J., Study on composition, structure and formation process of nanotube Na2Ti2O4(OH)2. Dalton T 2003, (20), 3898-3901.
    125. Armstrong, A. R.; Armstrong, G.; Canales, J.; Bruce, P. G., TiO2-B nanowires. Angew Chem Int Edit 2004, 43, (17), 2286-2288.
    126. Seo, D. S.; Lee, J. K.; Kim, H., Preparation of nanotube-shaped TiO2 powder. J Cryst Growth 2001, 229, (1), 428-432.
    127. Ma, R. Z.; Bando, Y.; Sasaki, T., Directly rolling nanosheets into nanotubes. J Phys Chem B 2004, 108, (7), 2115-2119.
    128. Bavykin, D. V.; Cressey, B. A.; Light, M. E.; Walsh, F. C., An aqueous, alkaline route to titanate nanotubes under atmospheric pressure conditions. Nanotechnology 2008, 19, (27).
    129. Bavykin, D. V.; Parmon, V. N.; Lapkin, A. A.; Walsh, F. C., The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes. J Mater Chem 2004, 14, (22), 3370-3377.
    130. Du, G. H.; Chen, Q.; Han, P. D.; Yu, Y.; Peng, L. M., Potassium titanate nanowires: Structure, growth, and optical properties. Phys Rev B 2003, 67, (3).
    131. Sun, X. M.; Chen, X.; Li, Y. D., Large-scale synthesis of sodium and potassium titanate nanobelts. Inorg Chem 2002, 41, (20), 4996-4998.
    132. Wang, B. X.; Shi, Y.; Xue, D. F., Large aspect ratio titanate nanowire prepared by monodispersed titania submicron sphere via simple wet-chemical reactions. J Solid State Chem 2007, 180, (3), 1028-1037.
    133. Bavykin, D. V.; Cressey, B. A.; Walsh, F. C., Low-temperature synthesis of titanate nanotubes in aqueous KOH. Aust J Chem 2007, 60, (2), 95-98.
    134. Daoud, W. A.; Pang, G. K. H., Direct synthesis of nanowires with anatase and TiO2-B structures at near ambient conditions. J Phys Chem B 2006, 110, (51), 25746-25750.
    135. Li, Q. Y.; Lu, G. X., Visible-light driven photocatalytic hydrogen generation on eosin Y-sensitized Pt-loaded nanotube Na2Ti2O4(OH)2. J Mol Catal a-Chem 2007, 266, (1-2), 75-79.
    136. Morgado, E.; de Abreu, M. A. S.; Pravia, O. R. C.; Marinkovic, B. A.; Jardim, P. M.; Rizzo, F. C.; Araujo, A. S., A study on the structure and thermal stability of titanate nanotubes as a function of sodium content. Solid State Sci 2006, 8, (8), 888-900.
    137. Morgado, E.; Jardim, P. M.; Marinkovic, B. A.; Rizzo, F. C.; De Abreu, M. A. S.; Zotin, J. L.; Araujo, A. S., Multistep structural transition of hydrogen trititanate nanotubes into TiO2-B nanotubes: a comparison study between nanostructured and bulk materials. Nanotechnology 2007, 18, (49).
    138. Bavykin, D. V.; Friedrich, J. M.; Walsh, F. C., Protonated titanates and TiO2 nanostructured materials: Synthesis, properties, and applications. Adv Mater 2006, 18, (21), 2807-2824.
    139. Armstrong, G.; Armstrong, A. R.; Canales, J.; Bruce, P. G., Nanotubes with the TiO2-B structure. Chem Commun 2005, (19), 2454-2456.
    140. Ferreira, O. P.; Souza, A. G.; Mendes, J.; Alves, O. L., Unveiling the structure and composition of titanium oxide nanotubes through ion exchange chemical reactions and thermal decomposition processes. J Brazil Chem Soc 2006, 17, (2), 393-402.
    141. Bavykin, D. V.; Lapkin, A. A.; Plucinski, P. K.; Torrente-Murciano, L.; Friedrich, J. M.; Walsh, F. C., Deposition of Pt, Pd, Ru and Au on the surfaces of titanate nanotubes. Top Catal 2006, 39, (3-4), 151-160.
    142. Zhu, B. L.; Guo, Q.; Huang, X. L.; Wang, S. R.; Zhang, S. M.; Wu, S. H.; Huang, W. P., Characterization and catalytic performance of TiO2 nanotubes-supported gold and copper particles. J Mol Catal a-Chem 2006, 249, (1-2), 211-217.
    143. Zhu, B. L.; Guo, Q.; Wang, S. R.; Zheng, X. C.; Zhang, S. M.; Wu, S. H.; Huang, W. P., Synthesis of metal-doped TiO2 nanotubes and their catalytic performance for low-temperature CO oxidation. React Kinet Catal L 2006, 88, (2), 301-308.
    144. Chien, S. H.; Liou, Y. C.; Kuo, M. C., Preparation and characterization of nanosized Pt/Au particles on TiO2-nanotubes. Synthetic Met 2005, 152, (1-3), 333-336.
    145. Idakiev, V.; Yuan, Z. Y.; Tabakova, T.; Su, B. L., Titanium oxide nanotubes as supports of nano-sized gold catalysts for low temperature water-gas shift reaction. Appl Catal a-Gen 2005, 281, (1-2), 149-155.
    146. Sikhwivhilu, L. M.; Coville, N. J.; Naresh, D.; Chary, K. V. R.; Vishwanathan, V., Nanotubular titanate supported palladium catalysts: The influence of structure and morphology on phenol hydrogenation activity. Appl Catal a-Gen 2007, 324, 52-61.
    147. Sikhwivhilu, L. M.; Coville, N. J.; Pulimaddi, B. M.; Venkatreddy, J.; Vishwanathan, V., Selective hydrogenation of o-chloronitrobenzene over palladium supported nanotubular titanium dioxide derived catalysts. Catal Commun 2007, 8, (12), 1999-2006.
    148. Torrente-Murciano, L.; Lapkin, A. A.; Bavykin, D. V.; Walsh, F. C.; Wilson, K., Highly selective Pd/titanate nanotube catalysts for the double-bond migration reaction. J Catal 2007, 245, (2), 272-278.
    149. Nian, J. N.; Chen, S. A.; Tsai, C. C.; Teng, H. S., Structural feature and catalytic performance of Cu species distributed over TiO2 nanotubes. J Phys Chem B 2006, 110, (51), 25817-25824.
    150. Bavykin, D. V.; Lapkin, A. A.; Plucinski, P. K.; Friedrich, J. M.; Walsh, F. C., TiO2 nanotube-supported ruthenium(III) hydrated oxide: A highly active catalyst for selective oxidation of alcohols by oxygen. J Catal 2005, 235, (1), 10-17.
    151. Cortes-Jacome, M. A.; Chavez, C. A.; Ramirez-Verduzco, L. F.; Lopez-Salinas, E.; Toledo-Antonio, J. A., WOx/TiO2 catalysts via titania nanotubes for the oxidation of dibenzothiophene. Chem Mater 2007, 19, (26), 6605-6614.
    152. Sato, Y.; Koizumi, M.; Miyao, T.; Naito, S., The CO-H2 and CO-H2O reactions over TiO2 nanotubes filled with Pt metal nanoparticles. Catal Today 2006, 111, (3-4), 164-170.
    153. V, S.; Bakardjieva, S.; Subrt, J.; Vecernikova, E.; Szatmary, L.; Klementova, M.; V, B., Sodium titanate nanorods: Preparation, microstructure characterization and photocatalytic activity. Appl Catal B-Environ 2006, 63, (1-2), 20-30.
    154. Wu, J. M., Photodegradation of rhodamine B in water assisted by titania nanorod thin films subjected to various thermal treatments. Environ Sci Technol 2007, 41, (5), 1723-1728.
    155. Pavasupree, S.; Ngamsinlapasathian, S.; Nakajima, M.; Suzuki, Y.; Yoshikawa, S., Synthesis, characterization, photocatalytic activity and dye-sensitized solar cell performance of nanorods/nanoparticles TiO2 with mesoporous structure. J Photoch Photobio A 2006, 184, (1-2), 163-169.
    156. Chen, Y. S.; Crittenden, J. C.; Hackney, S.; Sutter, L.; Hand, D. W., Preparation of a novel TiO2-based p-n junction nanotube photocatalyst. Environ Sci Technol 2005, 39, (5), 1201-1208.
    157. Yu, J. G.; Yu, H. G.; Cheng, B.; Zhao, X. J.; Zhang, Q. J., Preparation and photocatalytic activity of mesoporous anatase TiO2 nanofibers by a hydrothermal method. J Photoch Photobio A 2006, 182, (2), 121-127.
    158. Yu, Y. X.; Xu, D. S., Single-crystalline TiO2 nanorods: Highly active and easily recycled photocatalysts. Appl Catal B-Environ 2007, 73, (1-2), 166-171.
    159. Yu, H. G.; Yu, J. G.; Cheng, B.; Lin, J., Synthesis, characterization and photocatalytic activity of mesoporous titania nanorod/titanate nanotube composites. J Hazard Mater 2007, 147, (1-2), 581-587.
    160. Hou, L. R.; Yuan, C. Z.; Peng, Y., Synthesis and photocatalytic property of SnO2/TiO2 nanotubes composites. J Hazard Mater 2007, 139, (2), 310-315.
    161. Herman, D. A. J.; Ferguson, P.; Cheong, S.; Hermans, I. F.; Ruck, B. J.; Allan, K. M.; Prabakar, S.; Spencer, J. L.; Lendrum, C. D.; Tilley, R. D., Hot-injection synthesis of iron/iron oxide core/shell nanoparticles for T2 contrast enhancement in magnetic resonance imaging. Chem Commun 2011, 47, (32), 9221-9223.
    162. Cheong, S.; Ferguson, P.; Feindel, K. W.; Hermans, I. F.; Callaghan, P. T.; Meyer, C.; Slocombe, A.; Su, C. H.; Cheng, F. Y.; Yeh, C. S.; Ingham, B.; Toney, M. F.; Tilley, R. D., Simple synthesis and functionalization of iron nanoparticles for magnetic resonance imaging. Angew Chem Int Edit 2011, 50, (18), 4206-4209.
    163. Peng, S.; Wang, C.; Xie, J.; Sun, S. H., Synthesis and stabilization of monodisperse Fe nanoparticles. J Am Chem Soc 2006, 128, (33), 10676-10677.
    164. Xu, Z. C.; Shen, C. M.; Hou, Y. L.; Gao, H. J.; Sun, S. S., Oleylamine as both reducing agent and stabilizer in a facile synthesis of magnetite nanoparticles. Chem Mater 2009, 21, (9), 1778-1780.
    165. Kim, H.; Hong, H. J.; Jung, J.; Kim, S. H.; Yang, J. W., Degradation of trichloroethylene (TCE) by nanoscale zero-valent iron (nZVI) immobilized in alginate bead. J Hazard Mater 2010, 176, (1-3), 1038-1043.
    166. Zhang, M.; He, F.; Zhao, D. Y.; Hao, X. D., Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: Effects of sorption, surfactants, and natural organic matter. Water Res 2011, 45, (7), 2401-2414.
    167. Giasuddin, A. B. M.; Kanel, S. R.; Choi, H., Adsorption of humic acid onto nanoscale zerovalent iron and its effect on arsenic removal. Environ Sci Technol 2007, 41, (6), 2022-2027.
    168. Feng, J.; Zhu, B. W.; Lim, T. T., Reduction of chlorinated methanes with nano-scale Fe particles: Effects of amphiphiles on the dechlorination reaction and two-parameter regression for kinetic prediction. Chemosphere 2008, 73, (11), 1817-1823.
    169. Crane, R. A.; Scott, T. B., Nanoscale zero-valent iron: Future prospects for an emerging water treatment technology. J Hazard Mater 2012, 211, 112-125.
    170. Sunkara, B.; Zhan, J. J.; Kolesnichenko, I.; Wang, Y. Q.; He, J. B.; Holland, J. E.; McPherson, G. L.; John, V. T., Modifying metal nanoparticle placement on carbon supports using an aerosol-based process, with application to the environmental remediation of chlorinated hydrocarbons. Langmuir 2011, 27, (12), 7854-7859.
    171. Han, J. H.; Lee, S. W.; Kim, S. K.; Han, S.; Hwang, C. S.; Dussarrat, C.; Gatineau, J., Growth of RuO2 Thin films by pulsed-chemical vapor deposition using RuO4 precursor and 5% H2 reduction Gas. Chem Mater 2010, 22, (20), 5700-5706.
    172. Tang, H.; Zhu, D. Q.; Li, T. L.; Kong, H. N.; Chen, W., Reductive dechlorination of activated carbon-adsorbed trichloroethylene by zero-valent iron: Carbon as Electron Shuttle. J Environ Qual 2011, 40, (6), 1878-1885.
    173. Tee, Y. H.; Grulke, E.; Bhattacharyya, D., Role of Ni/Fe nanoparticle composition on the degradation of trichloroethylene from water. Ind Eng Chem Res 2005, 44, (18), 7062-7070.
    174. Liu, Y.; Phenrat, T.; Lowry, G. V., Effect of TCE concentration and dissolved groundwater solutes on NZVI-promoted TCE dechlorination and H2 evolution. Environ Sci Technol 2007, 41, (22), 7881-7887.
    175. Song, H.; Carraway, E. R., Catalytic hydrodechlorination of chlorinated ethenes bly nanoscale zero-valent iron. Appl Catal B-Environ 2008, 78, (1-2), 53-60.
    176. Zhou, T.; Li, Y. Z.; Lim, T. T., Catalytic hydrodechlorination of chlorophenols by Pd/Fe nanoparticles: Comparisons with other bimetallic systems, kinetics and mechanism. Sep Purif Technol 2010, 76, (2), 206-214.
    177. He, F.; Zhao, D. Y., Hydrodechlorination of trichloroethene using stabilized Fe-Pd nanoparticles: Reaction mechanism and effects of stabilizers, catalysts and reaction conditions. Appl Catal B-Environ 2008, 84, (3-4), 533-540.
    178. Xiao, Y.; Jiang, J. G.; Yang, Y.; Gao, G. L., Base-catalyzed destruction of hexachlorobenzene with zero-valent iron. Chem Eng J 2011, 173, (2), 415-421.
    179. Wang, X. Y.; Chen, C.; Liu, H. L.; Ma, J., Preparation and characterization of PAA/PVDF membrane-immobilized Pd/Fe nanoparticles for dechlorination of trichloroacetic acid. Water Res 2008, 42, (18), 4656-4664.
    180. Tee, Y. H.; Bachas, L.; Bhattacharyya, D., Degradation of trichloroethylene by iron-based bimetallic nanoparticles. J Phys Chem C 2009, 113, (28), 12616-12616.
    181. Ma, H.; Huang, Y. P.; Shen, M. W.; Guo, R.; Cao, X. Y.; Shi, X. Y., Enhanced dechlorination of trichloroethylene using electrospun polymer nanofibrous mats immobilized with iron/palladium bimetallic nanoparticles. J Hazard Mater 2012, 211, 349-356.
    182. Chun, C. L.; Baer, D. R.; Matson, D. W.; Amonette, J. E.; Penn, R. L., Characterization and Reactivity of Iron Nanoparticles prepared with added Cu, Pd, and Ni. Environ Sci Technol 2010, 44, (13), 5079-5085.
    183. Yin, W. Z.; Wu, J. H.; Li, P.; Wang, X. D.; Zhu, N. W.; Wu, P. X.; Yang, B., Experimental study of zero-valent iron induced nitrobenzene reduction in groundwater: The effects of pH, iron dosage, oxygen and common dissolved anions. Chem Eng J 2012, 184, 198-204.
    184. Shih, Y. H.; Hsu, C. Y.; Su, Y. F., Reduction of hexachlorobenzene by nanoscale zero-valent iron: Kinetics, pH effect, and degradation mechanism. Sep Purif Technol 2011, 76, (3), 268-274.
    185. He, N.; Li, P. J.; Zhou, Y. C.; Ren, W. X.; Fan, S. X.; Verkhozina, V. A., Catalytic dechlorination of polychlorinated biphenyls in soil by palladium-iron bimetallic catalyst. J Hazard Mater 2009, 164, (1), 126-132.
    186. Arnold, W. A.; Roberts, A. L., Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe(0) particles. Environ Sci Technol 2000, 34, (9), 1794-1805.
    187. Sun, M.; Reible, D. D.; Lowry, G. V.; Gregory, K. B., Effect of applied voltage, initial concentration, and natural organic matter on sequential reduction/oxidation of nitrobenzene by graphite electrodes. Environ Sci Technol 2012, 46, (11), 6174-6181.
    188. Dong, J.; Zhao, Y. S.; Zhao, R.; Zhou, R., Effects of pH and particle size on kinetics of nitrobenzene reduction by zero-valent iron. J Environ Sci-China 2010, 22, (11), 1741-1747.
    189. Huang, Y. H.; Zhang, T. C., Reduction of nitrobenzene and formation of corrosion coatings in zerovalent iron systems. Water Res 2006, 40, (16), 3075-3082.
    190. Noubactep, C., An analysis of the evolution of reactive species in Fe0/H2O systems. J Hazard Mater 2009, 168, (2-3), 1626-1631.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE