簡易檢索 / 詳目顯示

研究生: 劉席瑋
Hsia-Wei Liu
論文名稱: 鏈式骨成形蛋白與間葉幹細胞於組織工程骨再生之研究
Tethered Bone Morphogenetic Protein and Mesenchymal Stem Cells Applied for Tissue-Engineered Bone Regeneration
指導教授: 薛敬和
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 224
中文關鍵詞: 鄰分泌骨成形蛋白骨髓間葉幹細胞骨原細胞支架生物反應器光聚合包囊肌腱-骨癒合組織工程骨再生
外文關鍵詞: Juxtacrine, Bone morphogenetic protein, Bone marrow mesenchymal stem cell, Osteoprogenitor cell, Scaffold, Bioreactor, Photoencapsulation, Tendon-Bone healing, Tissue engineered bone regeneration
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出人造鄰分泌訊號生長因子靶向控釋系統模式作為重組人第二型骨成形蛋白控制釋放系統應用於骨再生。「凝膠模塑/鹽瀝濾法」預鑄三維多孔聚乳酸□聚甘醇酸支架。支架材料預浸漬於30 %雙氧水中,採用紫外線照射法進行光氧化反應,支架材料表面層形成過氧化基,接著以丙烯酸為間隔基將I型膠原蛋白分子藉由光誘導接枝聚合反應固定化於三維支架材料表面,重組人第二型骨成形蛋白共價鍵結於I型膠原蛋白接枝□塗佈表面層。另外,亦以具有雙面異功能性之丙烯醯基-聚乙二醇-N-羥基琥珀醯亞胺為間隔基橋聯骨成形蛋白後,再吸附固定於光氧化反應後之多孔支架。
    骨成形蛋白共價鍵結於膠原蛋白接枝□塗佈之表面,支架於體外二十八日內釋放實驗結果表明累積釋放量約為初始劑量之三分之一,且保持生物活性,顯示持續與緩慢雙相釋放,骨成形蛋白固定化支架將會抑制其與受體結合之活化複合物自細胞膜外自由擴散與內質化作用。骨膜細胞與骨髓間葉幹細胞量測生長因子調控細胞增殖與分化訊號之表達。高保留率與緩慢釋放之骨生長因子傳遞系統,運用多孔空間構形的支架,可增進細胞的貼附;骨生長因子鏈式於支架表面,一方面可提高載體內保留率避免在體內溶解流失,另一方面細胞與骨生長因子直接作用,以基質分泌的方式調節細胞的增殖和分化,骨成形蛋白能和跨膜絲/蘇氨酸蛋白激酶型受體結合,可能通過磷酸化介導信號傳遞從而誘導成骨蛋白及骨基質形成,促進骨癒合。為鑑定骨成形蛋白固定化支架上細胞之表型,以掃描式電子顯微鏡、細胞活力、組織學、免疫組化檢測評估細胞活性。骨成形蛋白固定化支架延長細胞內訊號刺激。鄰分泌訊號傳遞的結果促使細胞生長與分化。本研究發展三維多孔性支架結構,在微重力旋轉式生物反應器中動態細胞培養,可促進骨細胞高密度生長與高度分化。紐西蘭白兔股骨內髁及顱骨缺損模式分別建立動物實驗之鬆質骨與皮質骨缺損模型,評估無細胞之合成骨替代物或細胞/支架複合結構物植入體內後之骨再生情形。顯示仿生性結構支架表面共固定細胞識別黏附分子與骨生長因子可引發骨誘導與骨生成作用,應用於骨組織工程與再生醫學研究。
    光能敏感性水膠之快速應答特性,使其在各領域能廣泛地應用,包含了組織工程與再生醫學。具有互穿網絡結構之光能敏感性水膠雙丙烯酸聚乙二醇酯與細胞或組織接觸時,可透過光聚合而形成水膠,且無毒副作用,當用於組織工程時,細胞可懸浮在聚合物水溶液中,光聚合後細胞均勻分散在水膠載體內;本文亦將鏈式骨成形蛋白光能敏感性水膠包囊小鼠骨髓間葉幹細胞後,於體外成骨培養基體系中誘導培養,再植入小鼠背部肌袋並觀察新骨生成。研究證實其包囊骨髓間葉幹細胞後,將所得溶液暴露於365 nm紫外線下即轉變成水膠,可顯著增加載體內細胞分泌基質量,具成骨能力作用。進一步可注射細胞水凝膠溶液後再從體外光聚合固化,作為前十字韌帶重建之肌腱□骨癒合可行性評估。動物實驗,組織學上結果發現,控制組在第三週發現在肌腱及骨頭隧道之間開始有纖維組織生成,隨著膠原纖維連續性沿軸向重建組織;在第六週可見有骨頭長入間隔在肌腱及骨頭隧道之間的纖維層組織。含可溶性骨成形蛋白組在第六週發現肌腱與骨頭介面纖維層的厚度逐漸減少,可見長入的骨頭與骨皮質形成層之間已更趨成熟而組織化且已更進一步長入融合。含鏈式骨成形蛋白組在第六週則可見在骨皮質纖維層已出現纖維軟骨的形成,肌腱與骨頭已逐漸癒合而形成堅固的組織。生物力學測試結果,在介面強度方面,鏈式骨成形蛋白水膠組之最大極限拉出負荷隨著時間而遞增。六週比三週皆呈有意義增加,在第三週之介面強度,鏈式骨成形蛋白水膠組比可溶性骨成形蛋白水膠組大;在第六週,鏈式骨成形蛋白水膠組比無控制組達有意義增加。


    The studies describe a biomimetic mode of juxtacrine insoluble signaling stimulation for target delivery of recombinant human bone morphogenetic protein-2 (rhBMP-2) to prolong its retention for use in bone tissue engineering that would provide localized release in a manner that is triggered by cellular activity. A porous three-dimensional scaffold of poly-(lactide-co-glycolide) was fabricated by means of gel molding and particulate leaching. Collagen immobilization onto the scaffold surface was produced by performing photo-induced graft polymerization of acrylic acid, and rhBMP-2 was tethered to the collagenous surface by covalent conjugation. On pharmacokinetic analysis, in vitro enzyme-linked immunosorbent and alkaline phosphatase assays revealed sustained, slow release of rhBMP-2 over 28 days, with a cumulative release of one third of the initial load diffusing out of the scaffold. Conjugation of rhBMP-2 inhibited the free lateral diffusion and internalization of the activated complex of rhBMP-2 and the bone morphogenetic protein receptor. Osteoprogenitor cells were used as bone precursors to determine the expression of biosignaling growth factor in regulating cell proliferation and differentiation. To identify the phenotype of cells seeded on the rhBMP-2–conjugated scaffold, cellular activity was evaluated with scanning electron microscopy and with viability, histological, and immunohistochemical testing. The rhBMP-2–conjugated scaffold prolonged stimulation of intracellular signal proteins in cells. Enhancement of cell growth and differentiation was considered a consequence of juxtacrine signaling transduction. Animal studies of rhBMP-2–containing filling implants showed evidence of resorption and de novo bone formation.
    A novel localization process utilizes acrylate-N-hydroxysuccinimide poly (ethylene glycol) (PEG) as a spacer arm to tether rhBMP-2 on a scaffold surface. Bone marrow–derived mesenchymal stem cells were used as osteogenic precursors to evaluate cellular morphology and phenotypic expression of the scaffolds, which were seeded with the cells in a rotating bioreactor. Bilateral, full-thickness cranial defects in rabbits were selected to investigate the osteogenic effect of in vitro cultured mesenchymal stem cells for in vivo bone tissue engineering. Three-dimensional computed tomography and histology demonstrated that de novo bone formation was enhanced after surgery when PEG-tethered rhBMP-2 conjugate was introduced. Our work revealed the potential for biomimetic surface engineering by entrapping signaling growth factor–stimulated osteogenesis. It would create a new platform for bone-engineered stem cell therapies.
    Photopolymerized hydrogel based on poly (ethylene glycol) diacrylate (PEGDA) was applied to periosteum□derived osteoprogenitor cells encapsulation and orthopaedic tissue engineering. A need was recognized to incorporate rhBMP-2 in binding form into a PEG-tethering network to prevent its rapid, uncontrolled diffusion out of the matrix vehicle. Cell growth and differentiation are controlled by matrix-bound, insoluble signals. In vitro studies demonstrated that covalent conjugation of PEG-tethered rhBMP-2 can be utilized to mimic the extracellular matrix composition when generating engineered bone tissues. Fixation and incorporation of a tendon graft within the bone tunnel is a primary concern when employing tendon graft for ligament reconstruction. This study presents a novel technique for fabricating injectable PEGDA hydrogel photoencapsulated osteoprogenitor cells. A total of 28 adult New Zealand white rabbits were used. The long digitorum extensor tendon was transplanted into a bone tunnel of the proximal tibia. The tendon was pulled through a drill-hole in the proximal tibia and attached to the medial aspect of the tibia. Hydrogel suspension containing osteoprogenitor cells at a concentration of 20 million/ml was injected in the bone tunnel. Histological examination of the tendon-bone interface and biomechanical test for maximal pull-out load were evaluated at postoperative weeks 3 and 6. Histological analysis of tendon-bone interface showed an interface fibrous layer formed by photoencapsulation of periosteal cells between the tendon and the bone. This layer became progressive integrated with tendon and bone surface during the healing process. Biomechanical testing revealed higher maximal pull-out strength in the rhBMP-2 tethering group at all time points with a statistically significant difference at 3 and 6 weeks. The rhBMP-2 tethering group had a higher interface strength-to-length ratio and significant increase at 3 weeks and 6 weeks.

    第一章 緒論 1 1.1 前言 1 1.2 骨組織 3 1.2.1 骨骼結構與功能 3 1.2.2 骨骼的組成 6 1.2.3 硬骨形成 8 1.2.4 骨組織修復 9 1.3 骨移植材料 11 1.3.1 天然骨移植材料 12 1.3.2 人工骨移植替代材料 14 1.4 組織工程與再生醫學 18 1.4.1 概述 18 1.4.2 骨組織工程與再生研究文獻綜述 19 1.5 骨組織工程研究的挑戰 27 1.5.1 第三代生醫材料 27 1.5.2 生醫材料仿生化 29 1.5.3 生物大分子表面固定化研究文獻綜述 32 1.6 生長因子控制釋放與組織重建 35 1.6.1 生長因子控釋載體 35 1.6.2 生長因子控制釋放研究文獻綜述 39 1.7 研究動機與目的 46 第二章 理論基礎 48 2.1 骨組織工程支架 48 2.1.1 骨組織工程支架的基本要求 48 2.1.2 骨組織工程支架的設計與製備技術 50 2.2 生醫材料仿生表面工程 56 2.2.1 固定化技術的定義與分類 56 2.2.2 生物大分子固定化方法 59 2.2.3 生醫材料表面改質 63 2.3 生長因子靶向細胞生長的調控 67 2.3.1 概述 67 2.3.2 骨成形蛋白 69 2.3.3 骨成形蛋白誘骨活性 71 2.3.4 骨成形蛋白的受體與訊號傳遞機轉 72 2.3.5 骨成形蛋白的靶細胞 74 第三章 實驗材料與方法 80 3.1 人造鄰分泌訊號生長因子靶向控釋系統 80 3.1.1 實驗藥品 80 3.1.1.1 多孔支架製備與分析 80 3.1.1.2 細胞培養 81 3.1.1.3 動物實驗 82 3.1.2 實驗儀器與裝置 83 3.1.2.1 多孔支架製備與分析 83 3.1.2.2 細胞培養 83 3.1.2.3 動物實驗 84 3.1.3 多孔支架製備與表面改質 86 3.1.4 骨成形蛋白固定於含膠原蛋白載體之多孔支架 86 3.1.5 多孔支架材料特性分析 88 3.1.5.1 孔隙率和壓縮模數測定 88 3.1.5.2 多孔支架含水率和降解率測定 88 3.1.5.3 過氧化基和聚丙烯酸接枝量測定 89 3.1.5.4 膠原蛋白接枝量測定 89 3.1.5.5 骨成形蛋白保留率和釋放動力學定量分析 90 3.1.5.6 表面元素分析 91 3.1.5.7 表面形態分析 91 3.1.6 骨膜幹細胞分離與培養 91 3.1.7 體外釋放骨成形蛋白之生物活性測定 93 3.1.8 種子細胞植入多孔支架 93 3.1.9 細胞形態觀察 94 3.1.10 細胞增殖和細胞存活力檢測 94 3.1.11 細胞分化檢測 94 3.1.12 組織化學和免疫組織化學檢測 95 3.1.13 動物實驗 95 3.1.14 組織切片分析 96 3.2 多孔支架表面鏈式骨成形蛋白刺激骨髓間葉幹細胞分化與骨生成 98 3.2.1 實驗藥品 98 3.2.1.1 多孔支架表面鏈式骨成形蛋白製備與分析 98 3.2.1.2 細胞培養 98 3.2.1.3 動物實驗 100 3.2.2 實驗儀器與裝置 101 3.2.2.1 多孔支架表面鏈式骨成形蛋白製備與分析 101 3.2.2.2 細胞培養 102 3.2.2.3 動物實驗 103 3.2.3 鏈式骨成形蛋白偶聯物製備 104 3.2.4 多孔支架製備與鏈式骨成形蛋白 104 3.2.5 鏈式骨成形蛋白可行性檢測 104 3.2.6 鏈式骨成形蛋白支架特性分析 105 3.2.7 兔骨髓間葉幹細胞分離和成骨誘導 105 3.2.7.1 骨髓間葉幹細胞的分離和培養 105 3.2.7.2 骨髓間葉幹細胞成骨誘導培養與表型鑑定 107 3.2.8 鏈式骨成形蛋白偶聯物生物活性檢測和免疫螢光分析 108 3.2.9 生物反應器成骨誘導分化 109 3.2.10 細胞形態觀察 110 3.2.11 細胞增殖檢測 110 3.2.12 鹼性磷酸酶活性和去氧核糖核酸檢測 110 3.2.13 細胞分泌膠原蛋白基質檢測 111 3.2.14 鈣沉積定量分析 112 3.2.15 動物實驗 113 3.2.16 電腦斷層掃瞄檢測 114 3.2.17 組織切片分析和組織形態測量 115 3.3 鏈式骨成形蛋白光敏感性水膠用於前十字韌帶重建之肌腱-骨癒合 116 3.3.1 實驗藥品 116 3.3.1.1 鏈式骨成形蛋白偶聯物和光敏感性水膠製備 116 3.3.1.2 細胞培養 116 3.3.1.3 動物實驗和反轉錄聚合酶連鎖反應 118 3.3.2 實驗儀器與裝置 120 3.3.2.1 鏈式骨成形蛋白偶聯物和光敏感性水膠製備 120 3.3.2.2 細胞培養 120 3.3.2.3 動物實驗和反轉錄聚合酶連鎖反應 121 3.3.3 小鼠骨髓間葉幹細胞分離和培養 123 3.3.4 流式細胞分析儀檢測細胞免疫表型 123 3.3.5 成骨誘導分化和特異性指標檢測 124 3.3.6 鏈式骨成形蛋白偶聯物製備 125 3.3.7 鏈式骨成形蛋白偶聯物生物活性檢測 125 3.3.8 光敏感性水膠製備與骨髓間葉幹細胞包囊 126 3.3.9 細胞存活力分析 126 3.3.10 細胞分泌膠原蛋白基質和去氧核糖核酸檢測 127 3.3.11 鈣沉積定量分析 127 3.3.12 小鼠皮下植入實驗 128 3.3.13 組織切片和免疫螢光分析 128 3.3.14 反轉錄聚合酶連鎖反應(RT-PCR) 129 3.3.15 骨膜幹細胞分離與培養 130 3.3.16 動物實驗 131 3.3.17 組織切片分析 133 3.3.18 反轉錄聚合酶鏈鎖反應(RT-PCR) 133 3.3.19 生物力學試驗 134 第四章 結果與討論 136 4.1 人造鄰分泌訊號生長因子靶向控釋系統 136 4.1.1 多孔支架材料特性分析 136 4.1.1.1 孔隙率和壓縮模數測定 136 4.1.1.2 多孔支架含水率和降解率測定 136 4.1.1.3 過氧化基和聚丙烯酸接枝量測定 138 4.1.1.4 膠原蛋白接枝量測定 139 4.1.1.5 骨成形蛋白保留率和釋放動力學定量分析 140 4.1.1.6 表面元素分析 143 4.1.1.7 表面形態分析 145 4.1.2 體外釋放骨成形蛋白之生物活性測定 146 4.1.3 細胞形態觀察 147 4.1.4 細胞增殖和細胞存活力檢測 148 4.1.5 細胞分化檢測 149 4.1.6 免疫螢光分析 150 4.1.7 組織切片分析 152 4.1.8 討論 153 4.2 多孔支架表面鏈式骨成形蛋白刺激骨髓間葉幹細胞分化與骨生成 160 4.2.1 鏈式骨成形蛋白可行性與鏈式骨成形蛋白支架特性分析 160 4.2.2 兔骨髓間葉幹細胞分離和成骨誘導 163 4.2.3 鏈式骨成形蛋白偶聯物生物活性檢測和免疫螢光分析 165 4.2.4 細胞形態觀察 167 4.2.5 細胞增殖檢測 168 4.2.6 鹼性磷酸酶活性檢測 168 4.2.7 細胞分泌膠原蛋白基質檢測 170 4.2.8 鈣沉積定量分析 170 4.2.9 電腦斷層掃瞄檢測 172 4.2.10 組織切片分析和組織形態測量 174 4.2.11 討論 177 4.3 鏈式骨成形蛋白光敏感性水膠用於前十字韌帶重建之肌腱□骨癒合 180 4.3.1 流式細胞分析檢測陽性細胞表達率 180 4.3.2 成骨誘導分化和特異性指標檢測 180 4.3.3 鏈式骨成形蛋白偶聯物生物活性檢測 181 4.3.4 光敏感性水膠製備與骨髓間葉幹細胞包囊 183 4.3.5 細胞存活力分析 184 4.3.6 細胞分泌膠原蛋白基質與鈣沈積量檢測 184 4.3.7 小鼠皮下植入組織切片和免疫螢光分析 186 4.3.8 反轉錄聚合酶連鎖反應(小鼠) 186 4.3.9 兔肌腱□骨介面組織切片分析 190 4.3.10 反轉錄聚合酶鏈鎖反應(兔) 191 4.3.11 生物力學試驗 192 4.3.12 討論 192 第五章 結論與展望 197 參考文獻 201

    1. Boretos JW, Eden M., Contemporary Biomaterials, Material and Host Reponse,
    Clinical Applications, New Techmology and Legal Aspects. Park Ridge, NJ: Noyes
    Publications, 1984.
    2. Van de Putte KA , Urist MR. Osteogenesis in the interior of intramuscular implants of
    decalcified bone matrix. Clin Orthop Rel Res 1965; 43: 257–270.
    3. Urist MR, Bone: formation by autoinduction. Science 1965; 150: 893–899.
    4. Green J, Schotland S, Stauber DJ, et al. Cell-matrix interaction in bone: Type I
    collagen modulates signal transduction in osteoblast-like cells. Am J Physiol 1995;
    268: 1090–1103.
    5. Mizuno M, Shindo M, Kobayashi D, et al. Osteogenesis by bone marrow stromal
    cells maintained on type I collagen matrix gels in vivo. Bone 1997; 20: 101–107.
    6. Yaylaoglu MB, Yildiz C, Korkusuz F, et al. A novel osteochondral implant.
    Biomaterials 1999; 20: 1513–1520.
    7. Du C, Cui FZ , Zhu XD, et al. Three-Dimensional Nano-HAp/Collagen Matrix
    Loading with Osteogenic Cells in Organ Culture. J Biomed Mater Res 1999; 44:
    407–415.
    8. Zhang Y, Zhang M. Calcium phosphate/chitosan composite scaffolds for controlled in
    vitro antibiotic drug release. J Biomed Mater Res Part A 2002; 62: 378–386.
    9. Lee YM, Park YJ, Lee SJ, et al. Tissue engineered bone formation using
    chitosan/tricalcium phosphate sponges. J Periodontol 2000; 71: 410–417.
    10. Zhao F, Yin YJ, Lu WW, et al. Preparation and histological evaluation of biomimetic
    three-dimensional hydroxyapatite/chitosan-gelatin network composite scaffolds.
    Biomaterials 2002; 23: 3227–3234.
    - 202 -
    11. Gutowska A, Jeong B, Jasionowski M. Injectable Gels for Tissue Engineering. Anat
    Rec 2001; 263: 342–349.
    12. Agrawal CM, Ray RB. Biodegradable polymeric scaffolds for musculoskeletal tissue
    engineering. J Biomed Mater Res 2001; 55: 141–150.
    13. Vacanti CA, Upton J. Tissue-engineered morphogenesis of cartilage and bone by
    means of cell transplantation using synthetic biodegradable polymer matrices. Clin
    Plant Surg 1994; 21: 445–462.
    14. Meinig RP, Rahn B, Perren SM, Gogoldewski S. Bone regeneration with resorbable
    polymeric membranes: treatment of diaphyseal bone defects in the rabbit radius with
    poly(L-lactide) membrane. A pilot study. J Orthop Trauma 1996; 10: 178–190.
    15. Meinig RP, Buesing CM, Helm J, Gogoldewski S. Regeneration of diaphyseal bone
    defects using resorbable poly(L/DL-lactide) and poly(D-lactide) membranes in the
    Yucatan pig model. J Orthop Trauma 1997; 11: 551–558.
    16. Gugala Z, Gogolewski S. Regeneration of segmental diaphyseal defects in sheep
    tibiae using resorbable polymeric membranes: a preliminary study. J Orthop Trauma
    1999; 13: 187–195.
    17. Gugala Z, Gogolewski S. Healing of critical-size segmental bone defects in the sheep
    tibiae using bioresorbable polylactide membranes. Injury 2002; 33: 71–76.
    18. Breitbart S, Graride DA, Keler R. Tissue engineered bone repair of calvarial defects
    using cultured periosteal cells. Plast Reconstr Surg 1998; 101: 567–574.
    19. Bone Engineering (ed. Davis JE). Toronto: Em Squared Incor2 porated 1999.
    435–436.
    20. Thomson RC, Yaszemski MJ, Powers JM, et al. Fabrication of biodegradable
    polymer scaffolds to engineer trabecular bone. J Biomater Sci Polym Ed 1995; 7:
    23–38.
    21. Devin JE, Attawia MA, Laurencin CT. Three-dimensional degradable porous
    - 203 -
    polymer-ceramic matrices for use in bone repair. J Biomater Sci polymer 1996; 7:
    661–669.
    22. Ishaug SL, Crane GM, Gurlek A, et al. Ectopic bone formation by marrow stromal
    osteoblast transplantation using poly(DL-lactic-co-glycolic acid) foams implanted
    into the rat mesentery. J Biomed Mater Res 1997; 36: 1–8.
    23. Ishaug SL, Yaszemski MJ, Bizios R, et al. Osteoblast function on synthetic
    biodegradable polymers. J Biomed Mater Res 1994; 28: 1445–1453.
    24. Ishaug SL, Grane GM, Miller MJ, et al. Bone formation by three-dimensional
    stromal osteoblast culture in biodegradable polymer scaffolds. J Biomed Mater Res
    1997; 36: 17–28.
    25. Peter SJ, Miller MJ, Yaosko AW, et al. Polymer concepts in tissue engineering. J
    Biomed Mater Res 1998; 43: 422–427.
    26. Rivard CH, Chaput C, Rhalmi S, et al. Bio-absorbable synthetic polyesters and tissue
    regeneration. A study of three-dimensional proliferation of ovine chondrocytes and
    osteoblasts. Ann Chir 1996; 50: 651–658.
    27. Laurencin CT, E1 Amim SF, Ibin SE, et al. A highly porous 3-dimensional
    polyphosphazene polymer matrix for skeletal tissue regeneration. J Biomed Mater
    Res 1996; 30: 133–138.
    28. Attawia MA, Uhrich KE, Botchwey E, et al. Cytotoxicity testing of
    poly(anhydride-co-imides) for orthopedic applications. J Biomed Mater Res 1995; 29:
    1233–1240.
    29. Attawia MA, Uhrich KE, Botchwey E, et al. In vitro bone biocompatibility of
    poly(anhydride-co-imides) containing pyromellitylimidoalanine. J Orthop Res 1996;
    14: 445–454.
    30. Peter S J, Miller ST, Zhu G, et al. In vivo degradation of a poly(propylene fu-.
    marate)/beta-tricalcium phosphate injectable composite scaffold. J Biomed Mater Res
    - 204 -
    1998; 41: 1–7.
    31. Frazier DD, Lathi VK, Gerhart TN, et al. Ex-vivo degradation of a poly(propylene
    glycol-fumarate), biodegradable particulate composite bone cement. J Biomed Mater
    Res 1997; 35: 383–389.
    32. Peter SJ, Lu L, Kin DJ, et al. Marrow stromal osteoblast function on a
    poly(propylene fumarate)/beta-tricalcium phosphate biodegradable orthopaedic
    composite. Biomaterials 2000; 21: 1207–1213.
    33. Yaszenski MJ, Payne RG, Hayes WC. The ingrowth of new bone tissue and initial
    mechanical. properties of a degrading polymeric composite scaffold. Tissue Eng 1995;
    1: 41–52.
    34. Payne RG, McGonigle JS, Yaszemski MJ, et al. Development of an injectable, in situ
    crosslinkable, degradable polymeric carrier for osteogenic cell populations. Part 3.
    Proliferation and differentiation of encapsulated marrow stromal osteoblasts cultured
    on crosslinking poly(propylene fumarate). Biomaterials 2002; 23: 4381–4387.
    35. Jo S, Shin H, Mikos AG. Modification of oligo(poly(ethylene glycol) fumarate)
    macromer with a GRGD peptide for the preparation of functionalized polymer
    networks. Biomacromolecules 2001; 2: 255–261.
    36. Shin H, Jo S, Mikos AG. Modulation of marrow stromal osteoblast adhesion on
    biomimetic oligo[poly(ethylene glycol) fumarate] hydrogels modified with
    Arg-Gly-Asp peptides and a poly(ethyleneglycol) spacer. J Biomed Mater Res 2002;
    61: 169–179.
    37. Vehof JWM, Fisher JP, Dean D. Bone formation in transforming growth
    factor-beta-1-coated porous poly(propylene fumarate) scaffolds. J Biomed Mater Res
    2002; 60: 241–251.
    38. Hoffman AS, Schmer G, Harris C, Kraft WG. Covalent binding of biomolecules to
    radiation-grafted hydrogels on inert polymer surfaces. Trans Am Soc Artif Int Organs
    - 205 -
    1972; 18: 10–17.
    39. Jeschke B, Meyer J, Jonczyk A, et al. RGD-peptides for tissue engineering of
    articular cartilage. Biomaterials 2002; 23: 3455–3463.
    40. Schense JC, Hubbell JA. Three-dimensional migration of neuritis is mediated by
    adhesion site density and affinity. J Biol Chem 2000; 275: 6813–6818.
    41. Rezania A, Healy KE. Biomimetic peptide surfaces that regulate adhesion, spreading,
    cytoskeletal organization, and mineralization of the matrix deposited by
    osteoblast-like cells. Biotechnol Prog 1999; 15: 19–32.
    42. Burdick JA, Anseth KS. Photoencapsulation of osteoblasts in injectable
    RGD-modified PEG hydrogels for bone tissue engineering. Biomaterials 2002; 23:
    4315–4323.
    43. Elisseeff J, Anseth K, Sims D, McIntosh W, Randolph M, Langer R. Transdermal
    photopolymerization for minimally invasive implantation. Proc Natl Acad Sci USA
    1999; 96: 3104–3107.
    44. Burridge K, Chrzanowska-Wodnicka M. Focal adhesion, contractility, and signaling.
    Annu Rev Cell Dev Biol 1996; 12: 463–519.
    45. Cai KY, Yao KD, Cui YL. Surface modification of poly(D,L-lactic acid) with
    chitosan and its effects on the culture of osteoblasts in vitro. J Biomed Mater Res
    2002; 60: 398–404.
    46. Hsiue GH, Lee SD, Chang PCT. Platelet adhesion and cellular interaction with poly
    (ethylene oxide) immobilized onto silicone rubber membrane surfaces. J Biomater
    Sci -Polym Ed 1996; 7: 839–55.
    47. Hsiue GH, Lu PL, Chen JC. Multienzyme-immobilized modified polypropylene
    membrane for an amperometric creatinine biosensor. J Appl Polym Sci 2004; 92:
    - 206 -
    3126–34.
    48. Hsiue GH, Wang CC. Glucose oxidase immobilized polyethylene-g-acrylic acid
    membrane for glucose oxidase sensor. Biotechnol Bioeng 1990; 36: 811–5.
    49. Hsiue GH, Wang, C.C. Functionalization of polyethylene surface using
    plasma-induced graft copolymerization of acrylic acid. J Polym Sci Pol Chem 1993;
    31: 3327–37.
    50. Ikada Y. Surface modification of polymers for medical applications. Biomaterials
    1994; 15: 725–36.
    51. Zhu YB, Gao CY, Shen JC. Surface modification of polycaprolactone with
    poly(methacrylic acid) and gelatin covalent immobilization for promoting its
    cytocompatibility. Biomaterials 2002; 23: 4889–4895.
    52. Zhu YB, Gao CY, Liu XY, et al. Surface modification of polycaprolactone membrane
    via aminolysis and biomarcromolecule immobilization for promoting
    cytocompatibility of human endothelial cells. Biomacromolecules 2002; 3:
    1312–1319.
    53. Zhu HG, Ji J, Gao CY, et al. Surface engineering of poly(DL-lactic acid) by
    entrapment of aliginate-amino acid derivatives for promotion of chondrogenesis.
    Biomaterials 2002; 23: 3141–3148.
    54. Zhu HG, Ji J, Gao CY, et al. Surface engineering of poly(D,L-lactic acid) by
    entrapment of chitosan-based derivatives for promotion of chondrogenesis. J Biomed
    Mater Res 2002; 62: 532–539.
    55. Ito Y, Li J-S, Takahashi T, Imanishi Y, Okabayashi Y, Kido Y, Kasuga M.
    - 207 -
    Enhancement of the mitogenic effect by artificial juxtacrine stimulation using
    immobilized EGF. J Biochem 1997; 121: 514–20.
    56. Ito Y. Surface micropatterning to regulate cell functions. Biomaterials 1999; 20:
    2333–42.
    57. Ito Y. Tissue engineering by immobilized growth factors. Materials Science and
    Engineering 1998; C6: 267–74.
    58. Ito Y, Kondo S, Chen G, Imanshi Y. Patterned artificial juxtacrine stimulation of the
    cells by covalently immobilized insulin. FEBS Lett 1997; 403: 159–62.
    59. Ito Y, Liu SQ, Imanishi Y. Enhancement of cell growth on growth
    factor-immobilized polymer film. Biomaterials 1991; 12: 449–53.
    60. Ito Y, Zheng J, Imanishi Y, Yonezawa K, Kasuga M. Protein-free cell culture on
    artificial substrate immobilized with insulin. Proc Natl Acad Sci USA 1996; 93:
    3598–601.
    61. Kawabata M, Imamura T, Miyazono K. Signal transduction by bone morphogenetic
    proteins. Cytokine Growth Factor Rev 1998; 9: 49–61.
    62. Kim HD, Valentini RF. Retention and activity of BMP-2 in hyaluronic acid-based
    scaffolds in vitro. J Biomed Mater Res 2002; 59: 573–84.
    63. Kuhl PR and Griffith-Cima LG. Tethered epidermal growth factor as a paradigm for
    growth factor-induced stimulation from the solid phase. Nat Med 1996; 2: 1022–7.
    - 208 -
    64. Lee KY, Peters MC, Anderson KW, Mooney DJ. Controlled growth factor release
    from synthetic extracellular matrices. Nature 2000; 408: 998–1000.
    65. Lee SC, Shea M, Battle MA, et al. Healing of large segmental defects in rat femurs is
    aided by rhBMP-2 in PLGA matrix. J Biomed Mater Res 1994; 28: 1149–56.
    66. Lee SD, Hsiue GH, Chang PCT, Kao CY. Plasma-induced grafted polymerization of
    acrylic acid and subsequent grafting of collagen onto polymer film as biomaterials.
    Biomaterials 1996; 17: 1599–608.
    67. Lieberman JR, Daluiski A, Stevenson S, et al. The effect of regional gene therapy
    with bone morphogenetic protein-2 producing bone-marrow cells on the repair of
    segmental femoral defects in rats. J Bone Joint Surg Am 1999; 81: 905–17.
    68. Lieberman JR, Le LQ, Wu L, et al. Regional gene therapy with a BMP-2 producing
    murine stromal cell line induces heterotopic and orthotopic bone formation in rodents.
    J Orthop Res 1998; 16: 330–9.
    69. Lo H, Ponticello MS, Leong KW. Fabrication of controlled release biodegradable
    foams by phase separation. Tissue Engineering 1995; 1: 15–28.
    70. Ma Z, Gao C, Gong Y, Shen J. Cartilage tissue engineering PLLA scaffold with
    surface immobilized collagen and basic fibroblast growth factor. Biomaterials 2005;
    26: 1253–9.
    - 209 -
    71. Mann BK, Schmedlen RH, West JL. Tethered-TGF-beta increases extracellular
    matrix production of vascular smooth muscle cells. Biomaterials 2001; 22 (5):
    439–44.
    72. Mikos AG, Sarakinos G, Leite SM, et al. Laminated three-dimensional biodegradable
    foams for use in tissue engineering. Biomaterials 1993; 14: 323–30.
    73. Massagué J. Transforming growth factor-α: a modelfor membrane-anchored growth
    factor. J Biol Chem 1990; 265: 21393–6.
    74. Massagué J, Pandiella A. Membrane-anchored growth factors. Annu Rev Biochem
    1993; 62: 515–41.
    75. Nimni ME. Polypeptide growth factors: targeted delivery systems. Biomaterials 1997;
    18: 1201–25.
    76. Okada T, Ikada Y. Surface modification of silicone for percutaneous implantation. J
    Biomater Sci Polymer Ed 1995; 7: 171–80.
    77. Boyne PJ, Marx RE, Nevins M, Triplett G, Lazaro E, Lilly LC, Alder M,
    Nummikoski P, A feasibility study evaluation rhBMP-2/ absorbable collagen sponge
    for maxillary sinus augmentation, Int. J. Periodont. Restor. Dent. 1997; 17(1): 11–25.
    78. Puleo DA, Nanci A. Understanding and controlling the bone-implant interface.
    Biomaterials 1999; 20: 2311–21.
    - 210 -
    79. Putney SD, Burke PA. Improving protein therapeutics with sustained-release
    formulation. Nat Biotechnol 1998; 16: 153–7.
    80. Richardson TP, Peters MC, Ennett AB, Mooney DJ. Polymeric system for dual
    growth factor delivery. Nature Biotech 2001; 19: 1029–34.
    81. Riedel GE, Valentin-Opran A. Preliminary report: new technology. Clinical
    evaluation of rhBMP-2/ACS in orthopedic trauma: a progress report. Orthopedics
    1999; 22: 663–5.
    82. Sakiyama-Elbert SE, Hubbell JA. Development of fibrin derivatives for controlled
    release of heparin-binding growth factors. J Control Release 2000; 65 (3): 389–402.
    83. Sakiyama-Elbert SE, A. Panitch, J.A. Hubbell, Development of growth factor fusion
    proteins for cell-triggered drug delivery. FASEB J 2001; 15 (7): 1300–2.
    84. Sampath TK, Maliakal JC, Hauschka PV, et al. Recombinant human osteogenic
    protein-1 (hOP-1) induces new bone formation in vivo with a specific activity
    comparable with natural bovine osteogenic protein and stimulates osteoblast
    proliferation and differentiation in vitro. J Biol Chem 1992; 267: 20352–62.
    85. Tretinnikov ON, Kato K, Ikada Y. In vitro hydroxyapatide deposition onto a film
    surface-grafted with organophosphate polymer. J Biomed Mater Res 1994; 28:
    1365–73.
    - 211 -
    86. Uludag H, Norrie B, Kousinioris N, Gao T. Engineering temperature-sensitive poly
    (N-isopropylacrylamide) polymers as carriers of therapeutic proteins. Biotech Bioeng
    2001; 73: 510–21.
    87. Vukičević S, Stavljenić A, Pećina M. Discovery and clinical applications of bone
    morphogenetic proteins. Eur J Clin Chem Clin Biochem 1995; 33: 661–71.
    88. Wang CC, Hsiue GH. Immobilization of glucose oxidase on polyethylene film using
    a plasma induced graft copolymerization process. J Biomater Sci -Polym Ed 1993; 4:
    357–67.
    89. Wozney JM, Rosen V, Celeste AJ, Mitsock LM, Whitters MJ, Kriz RW, Hewick RM,
    Wang EA. Novel regulators of bone formation: molecular clones and activities.
    Science 1988; 242: 1528–34.
    90. Yamamoto M, Kato K, Ikada Y. Ultrastructure of the interface between cultured
    osteoblasts and surface-modified polymer substrates. J Biomed Mater Res 1997; 37:
    29–36.
    91. Yasko AW, Lane JM, Fellinger EJ, et al. The healing of segmental bone defects,
    induced by recombinant human bone morphogenetic protein (rhBMP-2). J Bone Joint
    Surg Am 1992; 74: 659–70.
    92. Zisch AH, Schenk U, Schense JC, Sakiyama-Elbert SE, Hubbell JA. Covalently
    conjugated VEGF—fibrin matrices for endothelialization. J Control Release 2001; 72
    - 212 -
    (1–3): 101–13.
    93. Alexander SA, Donoff RB. The glycosaminoglycans of open wounds. J Surg Res
    1980; 29: 422–429.
    94. An Y, Hubbell JA. Intraarterial protein delivery via intimally adherent bilayer
    hydrogels. J Controlled Rel 2000; 64: 205–215.
    95. Anseth KS, Metters AT, Brynt SJ, Martens PJ, Elisseeff JH, Bowman CN. In situ
    forming degradable networks and their application in tissue engineering and drug
    delivery. J Control Release 2002; 78: 199□209.
    96. Chen CH, Chen WJ, Shih CH, et al. Enveloping of periosteum on the tendon graft to
    enhance tendon-bone healing in a bone tunnel –A biomechanical and histological
    studies in rabbits. Arthroscopy 2003; 19: 290□296.
    97. Chowdhury SM, Hubbell JA. Adhesion prevention with ancrod released via a
    tissue-adherent hydrogel. J Surg Res 1996; 61: 58–64.
    98. Cruise GM, Hegre OD, et al. In vitro and in vivo performance of porcine islets
    encapsulated in interfacially photopolymerized poly (ethylene glycol) diacrylate
    membranes. Cell Transplant 1999; 8: 293–306.
    99. de John DS, Steegenga WT, Hendriks JMA, van Zoelen EJJ, Olijve W, Dechering KJ.
    Regulation of notch signaling genes during BMP2-induced differentiation of
    osteoblast precursor cells. Biochem Biophys Res Commun 2004; 320: 100□107.
    - 213 -
    100. DeLong SA, Gobin AS, West JL. Covalent immobilization of RGDS on hydrogel
    surfaces to direct cell alignment and migration. J Control Release 2005; 109:
    139□148.
    101. Elisseeff J, Anseth K, Sims D, McIntosh W, Randolph M, Langer R. Transdermal
    photopolymerization for minimally invasive implantation. Proc Natl Acad Sci USA
    1999; 96: 3104–3107.
    102. Elisseeff J, McIntosh W, et al. Photoencapsulation of chondrocytes in poly (ethylene
    oxide)-based semi-interpenetrating networks. J Biomed Mater Res 2000; 51:
    164–171.
    103. Glass JR, Dickerson KT, Stecker K, Polarek JW. Characterization of a hyaluronic
    acid□Arg□Gly□Asp peptide cell attachment matrix. Biomaterials 1996; 17:
    1101□1108.
    104. Goradia VK, Rochat MC, Grana WA, et al. Tendon-to-bone healing of a
    semitendinosus tendon autograft used for ACL reconstruction in a sheep model. Am J
    Knee Surg 2000; 13: 143□151.
    105. Goradia VK, Rochat MC, Kida M, Grana WA. Natural history of a hamstring tendon
    autograft used for anterior cruciate ligament reconstruction in a sheep model. Am J
    Sports Med 2000; 28:40□46.
    - 214 -
    106. Hattersley G, Cox K, Soslowsky LJ, et al. Bone morphogenetic proteins 2 and 12
    alter the attachment of tendon to bone in rat model: A histological and biomechanical
    investigation. Trans Orthop Res Soc 1998; 23: 96□100.
    107. Hopper RA, Zhang JR, Fourasier VL, et al. Effect of isolation of periosteum and dura
    on the healing of rabbit calvarial inlay bone grafts. Plast Reconstr Surg 2001; 107:
    454□462.
    108. Kawabata M, Imamura T, Miyazono K. Signal transduction by bone mophogenetic
    proteins. Cytokine Growth Factor Rev 1998; 9: 49□61.
    109. Kawasaki K, Ochi M, Uchio Y, Adachi N, Matsusaki M. Hyaluronic acid enhances
    proliferation and chondroitin sulfate synthesis in cultured chondrocytes embedded in
    collagen gels. J Cell Physiol 1999; 179: 142□148.
    110. Laurent TC, Laurent UB, Fraser JR. The structure and function of hyaluronan: an
    overview. Immunol Cell Biol 1996; 74: A1□A7.
    111. Liu SH, Panossian V, al-Shaikh R, et al. Morphology and matrix composition during
    early tendon to bone healing. Clin Orthop 1997; 339: 253□260.
    112. Lu S, Ramirez WF, et al. Photopolymerized, multilaminated matrix devices with
    optimized nonuniform initial concentration profiles to control drug release. J Pharm
    Sci 2000; 89: 45–51.
    113. Mann B K, Schmedlen R H, West J L. Tethered-TGF-beta increases extracellular
    - 215 -
    matrix production of vascular smooth muscle cells. Biomaterials 2001; 22: 439□444.
    114. Ohtera K, Yamada Y, Aoki M, et al. Effect of periosteum wrapped around tendon in a
    bone tunnel: A biomechanical and histological study in rabbits. Crit Rev Biomed Eng
    2000; 28: 115□118.
    115. Ritsila V, Alhopuro S, Rintala A. Bone formation with free periosteum. Scand J Plast
    Reconstr Surg 1972; 6: 51□56.
    116. Ritsila VA, Santavirta S, Alhopuro S, et al. Periosteal and perichondral grafting in
    reconstructive surgery. Clin Orthop 1994; 302: 259□265.
    117. Rodeo SA, Arnoczky SP, Torzilli PA, et al. Tendon healing in a bone tunnel: A
    biomechanical and histological study in the dog. J Bone Joint Surg 1993; 75A:
    1795□1803.
    118. Rodeo SA, Suzuki K, Deng XH, et al. Use of recombinant human bone
    morphogenetic protein-2 to enhance tendon healing in a bone tunnel. Am J Sports
    Med 1999; 27: 476□488.
    119. Rubak J N. Osteochondrogenesis of free periosteal grafts in the rabbit iliac crest Acta
    Orthop Scand 1983; 54: 826□831.
    120. Ruiz-Cardona L, Sanzgiri YD, Benedetti LM, Stella VJ, Topp EM. Application of
    benzyl hyaluronate membranes as potential wound dressings: evaluation of water
    vapor and gas permeabilities. Biomaterials 1997; 17: 1639–1643.
    - 216 -
    121. Sawhney AS, Pathak CP, et al. Optimization of photopolymerized bioerodible
    hydrogel properties for adhesion prevention. J Biomed Mater Res 1994; 28: 831–838.
    122. Suggs LJ, Mikos AG. Development of poly (propylene fumarateco-ethylene glycol)
    as an injectable carrier for endothelial cells. Cell Transplant1999; 8: 345–350.
    123. Trochon V, Mabilat C, Bertrand P, Legrand Y, Smadja-Joffe F, Soria C, Delpech B,
    Lu H. Evidence of involvement of CD44 in endothelial cell proliferation, migration
    and angiogenesis in vitro. Int J Cancer 1996; 66: 664–668.
    124. Uddstrdmer L, Ritsila V. Osteogenic capacity of periosteal grafts. Scand J Plast
    Reconstr Surg 1978; 12: 207□214.
    125. Vukičević S, StavljenićA, Pećina M. Discovery and clinical applications of bone
    morphogenetic proteins. Eur J Clin Chem Clin Biochem 1995; 33: 661□671.
    126. West JL, Hubbell JA. Separation of the arterial wall from blood contact using
    hydrogel barriers reduces intimal thickening after balloon injury in the rat: the roles
    of medial and luminal factors in arterial healing. Proc Natl Acad Sci USA 1996; 93:
    13188–13193.
    127. Williams C G, Kim T K, Taboas A, Malik A, Manson P, Elisseeff J. In vitro
    chondrogenesis of bone marrow-derived mesenchymal stem cells in a
    photopolymerizing hydrogel. Tissue Engineering 2003; 9: 679□688.
    - 217 -
    128. Wozney J , Rosen V, Celeste AJ, Mitsock LM, Whitters MJ, Kriz RW, Hewick RM,
    Wang EA. Novel regulators of bone formation: molecular clones and activities.
    Science 1988; 242: 1528□1534.
    129. Fu K, Kibanov AM, Langer R. Protein stability in controlled-release systems. Nat
    Biotechnol 2000; 18: 24–5.
    130. Geiger M, Li RH, Friess W. Collagen sponges for bone regeneration with rhBMP-2.
    Adv Drug Deliv Rev 2003; 55: 1613–29.
    131. Goldstein SA, Bonadio J. Potential role for direct gene transfer in the enchancement
    of fracture healing. Clin Orthop 1998; 355: S154–62.
    132. Hersel U, Dahmen C, Kessler H. RGD modified polymers: biomaterials for
    stimulated cell adhesion and beyond. Biomaterials 2003; 24 (24): 4385–415.
    133. Hoffman AS. Immobilization of biomaolecules and cells on and within polymeric
    biomaterials. Clin Mater 1992; 11: 61–6.
    134. Holland, SJ, Tighe, BJ. Polymers for biodegradable medical devices. 1. The potential
    of polyesters as controlled macromolecular release systems. J Control Release 1986;
    4: 155–80.
    135. Hollinger JO, Leong K. Poly (□-hydroxy acids): carriers for bone morphogenetic
    proteins. Biomaterials 1996; 17: 187–94.
    - 218 -
    136. Hollinger JO, Schmitz JP. Macrophysiologic roles of a delivery system for vulnerary
    factors needed for bone regeneration. Ann N Y Acad Sci 1997; 831: 427–37.
    137. Hollinger JO, Winn SR. Tissue engineering of bone in the craniofacial complex. Ann
    N Y Acad Sci 1999; 875: 379–85.
    138. Horwitz JI, Toner M, Tompkins RG, Yarmush ML. Immobilized IL-2 preserves the
    viability of an IL-2 dependent cell line. Mol Immunol 1993; 30: 1041–8.
    139. AH Zisch, MP Lutolf, M. Ehrbar, GP Raeber, SC Rizzi, N. Davies, et al.,
    Cell-demanded release of VEGF from synthetic, biointeractive cell ingrowth matrices
    for vascularized tissue growth. FASEB J 2003; 17 (15): 2260–2.
    140. AH Zisch, U. Schenk, JC Schense, SE Sakiyama-Elbert, JA Hubbell, Covalently
    conjugated VEGF-fibrin matrices for endothelialization. J Control Release 2001; 72
    (1–3): 101–13.
    141. Baldwin SP, Saltzman WM. Materials for protein delivery in tissue engineering. Adv
    Drug Deliv Rev 1998; 33: 71–86.
    142. Bonadio J, Goldstein SA, Levy RJ. Gene therapy for tissue repair and regeneration.
    Adv Drug Deliv Rev 1998; 33: 53–69.
    143. Bonadio J, Smiley E, Patil P, Goldstein SA Localized, direct plasmid gene therapy in
    vivo: prolonged therapy results in reproducible tissue regeneration. Nature Med 1999;
    5: 753–9.
    - 219 -
    144. Chen G, Ito Y, Imanishi Y.Mitogenic activity of water-soluble and water-insoluble
    insulin conjugates. Bioconj Chem 1997; 8: 106–10.
    145. Cook SD. Preliminary report: new technology: preclinical and clinical evaluation of
    osteogenic protein-1 (BNMP-7) in bony sites. Orthopedics 1999; 22: 669–71.
    146. de John DS, Steegenga WT, Hendriks JMA, van Zoelen EJJ, Olijve W, Dechering KJ.
    Regulation of notch signaling genes during BMP2-induced differentiation of
    osteoblast precursor cells. Biochem Biophys Res Commun 2004; 320: 100–7.
    147. Hidetsugu T, Hitoshi N, Mehmet G, Andrea R, Rosario SR, Racquel ZL, Miho I,
    Noriyuki N. Effects of immobilized recombinant human bone morphogenetic
    protein-2/succinylated type I atelocollagen on cellular activity of ST2 cells. J Biomed
    Mater Res Part A 2005; 75 (1): 210–5.
    148. Sheridan MH, Shea LD, Peters MC, Mooney DJ. Bioabsorbable polymer scaffolds
    for tissue engineering capable of sustained growth factor delivery. Journal of
    controlled release 2000; 64: 91□102.
    149. Murphy WL, Peters MC, Mooney DJ. Sustained release of vascular endothelial
    growth factor from mineralized poly(lactide-co-glycolide) scaffolds for tissue
    engineering. Biomaterials 2000, 21:2521□2527.
    150. Saito N, Okada T, et al. Local bone formation by injection of recombinant human
    bone morphogenetic protein-2 contained in polymer carriers. Bone 2003; 32:
    381□386.
    151. Masaya Yamamoto, Yasuhiko Tabata. Controlled release by biodegradable hydrogels
    enchances the ectopic bone formation of bone morphogenetic protein. Biomaterials
    2003; 24: 4375□4383.
    - 220 -
    152. Kirker-Head CA. Potential applications and delivery strategies for bone
    morphogenetic proteins. Advanced Drug Delivery Reviews 2000; 43: 65□92.
    153. Geiger M, Li RH. Collagen sponges for bone regeneration with rhBMP-2. Advanced
    Drug Delivery Reviews 2003; 55: 1613□1629.
    154. Uludag H, Norrie B, Kousinioris N, Gao T. Engineering temperature-sensitive
    poly(N-isopropylacrylamide) polymers and carriers of therapeutic proteins. Biotech
    Bio-eng 2001; 73: 501□521.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE