簡易檢索 / 詳目顯示

研究生: 潘賢謚
論文名稱: 濺鍍氮化銦鋁作為晶圓接合黏結層之相關研究
Wafer bonding with sputtered Alumium Indium Nitride (AlInN ) as an adhesive layer
指導教授: 謝光前
口試委員: 吳孟奇
何充隆
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2014
畢業學年度: 103
語文別: 中文
論文頁數: 65
中文關鍵詞: 氮化銦鋁濺鍍晶圓接合田口品質工程低掠角XRD
外文關鍵詞: Alumium Indium Nitride, Sputter, Wafer bonding, Taguchi Quality Engineering, Grazing Incident X-Ray Diffraction
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗欲研發中間介質材料氮化銦鋁作為黏結層來整合多種半導體材料,藉此達光電積體整合之目的。使用銦鋁複合靶材濺鍍製備氮化銦鋁薄膜作為晶圓接合的黏結層,並藉由設計銦佔整體鋁靶材面積比例的不同製備出多種不同成分比例的氮化銦鋁薄膜。因為濺鍍機濺鍍參數和水準眾多不易於找出最適合晶圓接合之參數和水準,所以本實驗使用田口品質工程有效率地且有系統性的探討對各項品質特性(氮化銦鋁薄膜成分比例、薄膜粗糙度、薄膜厚度)影響最深遠的參數和水準,最後成功濺鍍出粗糙度低(Rq=0.22nm~0.39nm)且膜厚薄(35.2nm~44.1nm)並經低掠角XRD分析其成分,其成分大約是銦鋁原子比為一的氮化銦鋁薄膜。並且使用此條件的氮化銦鋁薄膜作為同質(矽基板對矽基板)與異質(矽基板對砷化鎵基板、矽基板對氮化鎵基板)材料晶圓接合的黏結層,在氬氣溢流爐管內以退火溫度600℃最低持溫時間二小時可成功接合。並且長時間退火下的氮化銦鋁薄膜品質可能產生變化,導致電阻率上升使電流隨著時間愈長而愈小。


    目錄 摘要 Ⅰ 目錄 Ⅱ 圖目錄 Ⅴ 表目錄 Ⅷ 第一章緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-3 中間介質層選擇 10 1-4 實驗規劃 12 第二章 田口實驗計畫法介紹 13 2-1 使用動機 13 2-2 相關歷史和背景 13 2-3 穩健設計與品質損失 13 2-4 因子設計 15 2-5 田口直交表 15 2-6 信號雜音比 15 第三章 實驗設計與實驗介紹 18 3-1 實驗設計 18 3-2 黏結層氮化銦鋁薄膜品質特性 18 3-3 田口直交表設計 18 3-4 基板清洗 21 3-5 磁控直流脈衝反應式濺鍍 21 3-6 原子力顯微鏡 23 3-7 掃描式電子顯微鏡(SEM)和能量散佈分析儀(EDS) 24 3-8 粉末X光繞射分析 24 3-9 低掠角X光薄膜分析 25 3-10 紫外光-可見光譜儀 25 3-11 爐管退火晶圓結合 26 3-12 接合強度測試 27 3-13 電子槍蒸鍍與快速熱退製備電極 27 3-14 I-V電性量測 28 3-15 穿透式電子顯微鏡觀察介面 29 第四章 實驗結果與討論 30 4-1 田口法分析氮化銦鋁薄膜品質特性 30 4-2 氮化銦鋁薄膜銦鋁比品質特性 31 4-3 氮化銦鋁薄膜粗糙度品質特性 34 4-4 氮化銦鋁薄膜膜厚品質特性 38 4-5 探討黏結層氮化銦鋁最佳參數和品質特性改善 40 4-6 X光繞射(XRD)分析確認氮化銦鋁薄膜組成成分 42 4-7 粉末X光繞射(Powder XRD)分析以不同面積比例銦鋁複合靶材濺鍍之氮 化銦鋁薄膜 43 4-8 X光低掠角確認氮化銦鋁薄膜A及薄膜B 46 4-9 原子力顯微鏡量測以不同面積比例銦鋁複合靶材濺鍍之銦鋁薄膜膜厚 48 4-10 紫外光-可見光光譜儀分析氮化銦鋁穿透率 48 4-11 爐管溫度及持溫時間對晶圓接合的影響 49 4-12 同質基板晶圓接合 49 4-13 異質基板晶圓接合(矽/砷化鎵;矽/氮化鎵) 52 4-14 氮化銦鋁黏結層TEM圖 53 4-15 電性分析 55 第五章 結論 58 附錄 60 參考文獻 62

    [1] E. A. Fitzgerald, “Dislocation in strained-layer epitaxy: theory, experiment, and applications,” North-Holland Amstedam-London New York-Tokyo.(1991).
    [2]R. F. Wolffenbuttel, K. D. Wise, “Low temperature silicon wafer-to-wafer bonding using gold at eutectic temperature,” sensors and Actuators A, 43, 223-229(1994).
    [3]Lord Rayleigh, “A study of glass surfaces in optical contact,” Proc.Phys.Soc, A156, 326(1936)
    [4]G. Wallis and D. I. Pommerantz, “Field assisted glass-metal sealing,” J. App. Phys. 40, 3946 (1946).
    [5] J. B. Lasky, S. R. Stiffler, F. R. White, and J. R. Abernathy, “Silicon-on-insulator (SOI) by bonding and etch-back,” Proceeding of the IEEE International Electronic Device Meeting, IEEE, Piscataway, NJ, (1985), p.684.
    [6]M. Shimbo, K. Furukawa, K. Fukuda, and K. Tanzawa, “silicon-to-silicon direct bonding method,” J. Appl. 60,2987(1986).
    [7] Q. –Y. Tong, X. –L. Xu, and H. Shen, “Diffusion and oxide viscos flow mechanism in SDB process and silicon wafer rapid thermal bonding,” Electronics Letters 26, pp.697-699(1990).
    [8]Q.-Y. Tong, U. Gosele, Semiconductor Wafer Bonding: Science and Technology, JHON WILEY & SONS, INC. (1999).
    [9]C. Gui, M. Elwenspoek, N. Tas, J. G. E. Gardeniers, “The effect of surface on direct wafer bonding,” J. App. Phys. 85, 10(1999).
    [10] N. Miki, S. M. Spearing, “Effect of nanoscale surface roughness on the bonding energy of direct-bonded silicon wafers,” J. App. Phys.94, 10(2003).
    [11]Y. H. Lo, R. Bhat, D. M. Hwang, M. A. Koza, and T. P. Lee, “Bonding by atomic rearrangement of InP/InGaAsP 1.5 m wavelength lasers on GaAs substrates,”Applied Physics Letters 58, 1961(1991).
    [12]F. A. Kish, D. A. Vanderwater, M. J. Peanasky, M. J. Ludowise, S. G. Hummel, S. J. Rosner, “Low-resistance ohmic conduction across compound semiconductor wafer-bonded interfaces,” Applied Physics Letters 67, 14(1995).
    [13]K. L. Chang, G. W. Pickrell, K. Y. Cheng, K. C. Hsieh, “Wafer bonding with low-temperature-grown(Ga, P) as an adhesive material,” Semiconductor science Technology, 19, 906(2004).
    [14] K. L. Chang, G. W. Pickrell, D. E. Wohlert, J. H. Epple, H. C. Lin, “Microstructure and wet oxidation of low-temperature-grown amorphous(Al/Ga,As),” J. App. Phys.89, 1(2001).
    [15]莊宗浩,濺鍍氮化銦黏結層應用於同質或異質接面的晶圓接合,國立清華大學電子工程學系碩士論文(2013).
    [16] T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, E. Kurimoto, “ Optical bandgap energy of wurtzite InN, “Appl. Phys. Lett. 81 (2002).
    [17]Pierre Carrier, Su-Huai Wei, “Theoretical study of the band-gap anomaly of InN,” J. Appl. Phys. 97, 033707 (2005).
    [18] A. J. Noreika, M. H. Francombe and S. A. Zeitman, “Dielectric properties of reactively sputtered films of aluminum nitride,” J. Vas. Sci. Technol. (1969).
    [19] V. Cimalla, J Pezoldt , O. Ambacher, “Group III nitride and SiC based MEMS and NEMS: materials properties, technology and applications,” J. Phys. D: Appl. Phys. 40 (2007).
    [20]葉東昇,反應濺鍍氮化銦鋁薄膜及其特性研究,國立清華大學材料科學工程學系博士論文(2009).
    [21] J.-F. Carlin, C. Zellweger, J. Dorsaz, S. Nicolay, G. Christmann, E. Feltin, R. Butte, N. Grandjean, “Progresses in III-nitride distributed Bragg reflectors and microcavities using AlInN/GaN materials,” Phys. Stat. Sol. (b) 242 (2005).
    [22]R. E. Jones, R. Broesler, K. M. Yu, J. W Ager Ⅲ, E. E. Haller, W. Walukiewicz, X. Chen, W. J. Schaff, “ Band gap bowing parameter of In1-xAlxN,” J. Appl. Phys.104,123501 (2008).
    [23]蘇朝墩(2002)。品質工程。臺北市:中華民國品質學會.
    [24]M. S. Phadke, “Quality Engineering Using Robust Design,” Prentice-Hall.
    [25]鍾清章(1996) ,田口式品質工程導論。臺北市:中華民國品質學會.
    [26]V. Chawla, R. Jayaganthan, A. K. Chawla, Ramesh Chandra, “Microstructural characterizations of magnetron sputtered Ti films on glass substrate,” Journal of materials processing technology,209(2009).
    [27]N. C. Zoita, C. E. A. Grigorescu, “Influence of growth temperature and deposition duration on the structure, surface morphology and optical properties of InN/YSZ(100),”Applied surface science 258.
    [28]Daniel Rosen, “Studies of the Reactive Sputtering Process and its Application in Electro-Acoustic Devices,” Digital comprehensive summaries of Uppsala Dissertations from the Faculty of Science and Technology 142.
    [29] K. Kubota, Y. Kobayashi, K. Fujimoto, “Preparation and properties of III-V nitride thin films,” J. Appl. Phys. 66 (1989).
    [30] Q. X. Guo, T. Tanaka, M. Nishio, H. Ogawa, “Optical bandgap energy of wurtzite In-rich AlInN alloys,” Jpn. J. Appl. Phys. 42 (2003).
    [31]吳泰伯,李信義,李志甫(1988)。X光薄膜分析技術。載於汪建民,材料分析(頁73-80)。新竹市:中國材料學會.
    [32] National physical Laboratory, Sputter yield values.網址: http://www.npl.co.uk/science-technology/surface-and-nanoanalysis/services/sputter-yield-values 上網日期:2014.11.26.
    [33]Aurora Costales, Miguel A. Blanco, Angel Martin Pendas, Anill k. Kandalam, Ravindra Pandey, “Chemical Bonding in group Ⅲ Nitrides,” JACS ARTICLES,(2001).
    [34]Vpin Chawla, R. Jayaganthan, Ramesh Chanra, “Influence of sputtering on the structure and Mechanical properties,” J. Master. Sci. Technol(2010).
    [35]Takashi Ishiguro, Kazumi Miyamura, “Controllability of Mesoscopic Surface Roughness of Sputtered Al and Al-N Films,” Materials Transactions, Vol.46, NO. 12(2005).pp 3037 to 3043.
    [36]V. S. Smentkowski, “Review Trend in sputtering,” progress in surface science 64(2000).
    [37]H. Jin, J. Zhou, S. R. Dong, B. Feng, J. K. Luo, D. M. Wang, W. I. Milne, C. Y. Yang, “Deposition of c-axis orientation aluminum nitride films on flexible polymer substrate by reactive direct-current magnetron sputtering,” Thin solid Films520(2012).
    [38]Qixin Guo, Akira. Okada, Hiroshige. Kidera, Mitsuhiro. Nishio, Hiroshi Ogawa, “Growth of AlInN on (111)GaAs substrates,” J. Appl. Phys. Vol.39 (2000).
    [39]T. Peng, J. Piprek, G. Qiu, J. O. Olowolafe, K. M. Unruh, C. P. Swann, E. F. Schubert, “ Band gap bowing and refractive index spectra of polycrystalline AlxIn1-xN films deposited by sputtering,” Appl. Phys. Lett. Vol. 71(1997).
    [40]Qixin Guo, Kousuke Yahata, Tooru Tanaka, Misuhiro Nishio, Hiroshi Ogawa, “ Growth and characterization of reactive sputtered AlInN films,” Phys,stat.(c) 0, No. 7, 2553-2536(2003).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE