研究生: |
李毅君 |
---|---|
論文名稱: |
高介電閘極氧化物成長於三五族半導體上之微結構研究 Research on Microstructural Characterization of High κ Gate Dielectrics Grown on III-V Compound Semiconductor |
指導教授: |
洪銘輝
郭瑞年 |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2010 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 110 |
中文關鍵詞: | 三五族半導體 、電子顯微鏡 、高介電閘極氧化物 、氧化釓 、電子能量損失能譜儀 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
The compound semiconductor channel materials have drawn great attention recently in order to solve the rapid shrinkage of transistor feature size. The III-V based channel materials offer competitive advantages over Si in high-speed and high power applications. To investigate the microstructure of high κ films/III-V semiconductor, HRTEM and X-ray diffraction analyses were performed.
Al2O3/Ga2O3(Gd2O3)/In0.20Ga0.80As/GaAs heterostructures after rapid thermal annealing (RTA) to 850oC under N2 remained intact; the In0.20Ga0.80As/GaAs interface is free of misfit dislocations and In0.20Ga0.80As stay strained after 850oC RTA. This thermal stability is important for fabricating self-aligned inversion-channel InGaAs metal-oxide-semiconductor field-effect-transistors, a candidate for the complementary MOS technology beyond the 16 nm node.
Gd2O3(Ga2O3) as a gate dielectric, is capable of unpinning the Fermi level and shows remarkable device characteristics. The growth of the epi-Gd2O3 layer in the initial stage is the key. We have used STEM-HAADF imaging to establish the possible interfacial atomic structure of the Ga-O-Gd bonding at the interface. The initial growth of Gd2O3 is strained and gradually relaxed due to the misfit dislocations formed.
Moreover, Nano-thick Gd2O3 epitaxial films grown on GaN substrate can be used for future high power devices. The interesting phase transactions were observed from hexagonal to monoclinic structure as film thickness more than 3 nm. The Gd N4,5 and O K ELNES of different phases were investigated by high spatial resolution STEM-EELS method.
Ch. 1
1. G. E. Moore, ”Cramning more components onto integrated circuits”, Electronics, 38, 114-117 (1965).
2. Gordon E. Moore, “No Exponential is Forever: But Forever can be Delayed!”, Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC. 2003 IEEE International, 1, 20 – 23 (2003).
3. M. Depas, B. Vermeire, P. W. Mertens, R. L. Van Meirhaeghe, and M. M. Heyns, “Determine of Tunneling Parameters in Ultra-thin Oxide Layer Poly-Si/SiO2/Si Structure”, Solid-state Electron, 38, 1465-1471 (1995).
4. A. T. Fromhold, “Quantum Mechanics for Applied Physics and Engineering” (1981).
5. E. Merbacher, “Quantum Mechanics”, 3rd Ed (Wiley 1998).
6. D. A. Muller, T. Sorsch, S. Moccio, F. H. Baumann, and G. Timp, “The electronic structure at the atomic scale of ultrathin gate oxides”, Nature, 399, 758 (1999).
7. Michel Houssa, “High-κ gate dielectrics” published by Institute of Physics Publishing (2004).
8. G. D. Wilk, R. Wallace, and J. Anthony, “High-κ gate dielectrics: Current status and materials properties considerations”, J. Appl. Phys. 89 5243 (2001).
9. K. Mistry, C. Allen, C. Auth, B. Beattie, D. Bergstrom, M. Bost, M. Brazier, M. Buehler, A. Cappellani, R. Chau, C.-H. Choi, G. Ding, K. Fischer, T. Ghani, R. Grover, W. Han, D. Hanken, M. Hattendorf, J. He, J. Hicks, R. Heussner, D. Ingerly, P. Jain, R. James, L. Jong, S. Joshi, C. Kenyon, K. Kuhn, K. Lee, H. Liu, J. Maiz, B. McIntyre, P. Moon, J. Neirynck, S. Pae, C. Parker, D. Parsons, C. Prasad, L. Pipes, M. Prince, P. Ranade, T. Reynolds, J. Sandford, L. Shifren, J. Sebastian, J. Seiple, D. Simon, S. Sivakumar, P. Smith, C. Thomas, T. Troeger, P. Vandervoorn, S. Williams, K. Zawadzki, “A 45nm logic technology with HK+metal gate transistors, strained silicon, 9 Cu interconnect layers, 193nm dry patterning, and 100% Pb-free packaging”, IEDM Tech Dig., pp. 247-250 (2007).
10. C. Auth, M. Buehler, A. Cappellani, C. Choi, G. Ding, W. Han, S. Joshi, B. McIntyre, M. Prince, P. Ranade, J. Sandford, C. Thomas, “45nm High k+Metal Gate Strain-Enhanced Transistors”, Intel Technology Journal, 12, 2, (2008).
11. M. Hong, J. P. Mannaerts, J. E. Bowers, J. Kwo, M. Passlack, W-Y. Hwang, and L. W. Tu, “Novel Ga2O3(Gd2O3) Passivation Techniques to Produce Low Dit Oxide-GaAs Interfaces” , J. Crystal Growth 175/176 422 (1997).
12. M. Hong, J. Kwo, A. R. Kortan, J. P. Mannaerts and A. M. Sergent, “ Epitaxial Cubic Gadolinium Oxide as a Dielectric for Gallium Arsenide Passivation”, Science 283, 1897, (1999).
13. F. Ren, M. Hong, W. S. Hobson, J. M. Kuo, J. R. Lothian, J. P Mannaem, J. Kwo, S. N. G. Cho and A. Y. Cho, “Demonstration of enhancement-mode p- and n-channel GaAs MOSFETs with Ga2O3(Gd2O3) as gate oxide,” Solid State Electron., 41, 1751-1753 (1997).
14. F. Ren, J. M. Kuo, M. Hong, W. S. Hobson, J. R. Lothian, J. Lin, W. S. Tseng, J. P. Mannaerts, J. Kwo, S. N. G. Chu, Y. K. Chen, and A. Y. Cho, “Ga2O3(Gd2O3) / InGaAs enhancement-mode n-channel MOSFETs”, IEEE Electron Device Lett., 19, 309, (1998).
15. Y. Sun, S. J. Koester, E. W. Kiewra, J. P. de Souza, N. Ruiz, J. J. Bucchignano, A. Callegari, K. E. Fogel, D. K. Sadana, J. Fompeyrine, D. J. Webb, J. –P. Locquet, M. Sousa, and R. Germann, “Post-Si CMOS: III-V n-MOSFETs with High-κ Gate Dielectrics”, Compound Semiconductor Integrated Circuit Symposium, May. 2007.
Ch. 2
1. 汪建民,“材料分析“,中國材料科學學會,1998.
2. M. Karlik, “Lattice imaging in Transmission Electron Microscopy”, Materials structure, 8, 3, (2001).
3. D. B. Wiliams and C. B. Carter, “Transmission Electron Microscopy”, Plenum Press, New York, 1996.
4. Ray F. Egerton, “Physical principles of electron microscopy”, Springer (2005).
5. B. Fultz and J. Howe, “Transmission Electron Microscopy and Diffractometry of materials”, Springer 3rd Edition (2007).
6. A. Tonejc, “High reslution transmission electron microscopy (HRTEM): image processing analysis of defect and grain boundaries in nanocrystalline materials”, Acta Chim. Slov. 46, 435-461 (1999).
7. Earl J. Kirkland, “Image Simulation in Transmission Electron Microscopy”, Kavli summer school, ejk (2006).
8. J. M. Cowley and A. F. Moodie, “The scattering of electrons by atoms and crystals. I. A new theoretical approach”, Acta Cryst., 10, 609 (1957).
9. J. M. Cowley, “Image contrast in a transmission scanning electron microscope”, Appl. Phys. Lett., 15, 58 (1969).
10. L. Reimer, and H. Kohl, “Transmission Electron Microscopy: Physics of Image Formation”, Springer (2008).
11. O. Scherzer, “The theoretical resolution limit of the electron microscope”, J. Appl. Phys., 20, 20 (1949).
12. N. D. Browning, R. Erni, S. Lopatin, A. Ziegler, J. C. Idrobo, C. F. Kisielowski, M. K. Cinibulk, “Scannong transmission electron microscopy in the FEI monochromated Tecnai F20 UT”, FEI Applied solution, 1, 16-27 (2005).
13. 鮑忠興, 劉思謙, “近代穿透式電子顯微鏡實務”, 滄海 (2008).
14. Christoph Koch, “Determination of core structure periodicity and point defect density along dislocations”, Ph. D. thesis, Arizona state university (2002).
15. A. Amali and P. Rez, “Theory of Lattice Resolution in High-angle Annular Dark-field Images”, Microsc and Microanal., 3, 28 (1997).
16. S. J. Pennycook and D. E. Jesson, “High-resolution Z-contrast imaging of crystals”, Ultramicroscopy 78, 14-38 (1991).
17. P. Hartel, P. Rose, and C. Dinges, “Conditions ad reasons for incoherent imaging in STEM”, Ultramicroscopy, 63, 93-114 (1996).
18. Peter D. Nellist, “Scanning Transmission Electron Microscopy”, Science of Microscopy, 1, 65-132 (2007).
19. V. J. Keast, A. J. Scott, R. Brydson, D. B. Williams, and J. Bruley, ”Electron energy-loss near edge structure – a tool for the investigation of electronic structure on the nanometer scale”, Journal of Microscopy, 203, 135-175, (2001).
20. I. Tanaka, T. Mizoguchi, and T. Yamamoto, “XANE and ELNES in ceramic Science”, Journal of American Ceramic Society, 88, 2013-2029 (2005).
21. D. O. Klenov, S. Stemmer, “Contributions to the contrast in experimental high-angle annular dark-field images”, Ultramicroscopy, 106, 889-901 (2006).
22. T. Ishitani, H. Tsuboi, T. Yaguchi, and H. Koike, “Transmission Electron Microscope Sample Preparation using a focused ion beam”, J. Electron Microsc, 43, 322-326 (1994).
23. T. C. Isabell, P. E. Fischione, C. O’keefe, M. U. Guruz, and V. P. Dravid, “Plasma cleaning and its applications for electron microscopy”, Microscopy and Microanalysis, 5, 126-135 (1999).
Ch. 3
1. M. Heyns and W. Tsai, “ Ultimate scaling of CMOS logic devices with Ge and III-V materials”, MRS Bulletin, 34, 485-492 (2009).
2. M. Hong, Y. K. Chen, M. C. Wu, J. M. Vandenberg, S. N. G. Chu, J. P. Mannaerts, and M. A. Chin, “Periodic index separate confinement heterostructure InGaAs/AlGaAs quantum well lasers grown by temperature modulation molecular beam epitaxy” Appl. Phys. Lett., 61, 43 (1992).
3. D. C. Streit, W. L. Jones, L. P. Sadwick, C. W. Kim, and R. J. Hwu, “Effect of rapid thermal annealing on planar‐doped pseudomorphic InGaAs high electron mobility transistor structures”, Appl. Phys. Lett., 58, 2273 (1991).
4. F. C. Frank and J. H. van der Merwe, “ One dimensional dislocations”, Proc. R. Soc. London, Ser. A, 198, 205-225 (1949).
5. J. W. Matthews, A. E. Blakeslee, “Defects in epitaxial multilayers: I. Misfit dislocations”, J. Cryst. Growth., 27, 118-125 (1974).
6. T. Fujii and S. Yamazaki, “A new lattice relaxation mode in InGaAs on GaAs”, Journal of Crystal Growth, 146, 489-494 (1995).
7. K. H. Shiu, T. H. Chiang, P. Chang, L. T. Tung, M. Hong, J. Kwo, and W. Tsai, “ 1 nm equivalent oxide thickness in Ga2O3(Gd2O3)/In0.2Ga0.8As metal-oxide semiconductor capacitors” Appl. Phys. Lett., 92, 172904 (2008).
8. K. H. Shiu, C. H. Chiang, Y. J. Lee, W. C. Lee, P. Chang, L. T. Tung, M. Hong, J. Kwo, and W. Tsai, “Oxide scalability in Al2O3/ Ga2O3(Gd2O3)/In0.2Ga0.8As/GaAs heterostructures”, J. Vac. Sci. Technol. B 26, 1132 (2008).
9. M. Hong, J. Kwo, T. D. Lin, and M. L. Huang, “ InGaAs Metal Oxide Semiconductor Devices with Ga2O3(Gd2O3) high κ Dielectrics for Science and technology beyond Si CMOS”, MRS Bulletin, 34, 514-521 (2009).
Ch. 4
1. M. Hong, J. P. Mannaerts, J. E. Bowers, J. Kwo, M. Passlack, W-Y. Hwang, and L. W. Tu, “Novel Ga2O3(Gd2O3) Passivation Techniques to Produce Low Dit Oxide-GaAs Interfaces” , J. Crystal Growth 175/176 422 (1997).
2. F. Ren, M. Hong, W.S. Hobson, J. M. Kuo, J. R. Lothian, J. P. Mannaerts, J. Kwo, Y. K. Chen, A. Y. Cho, “Enhancement-Mode p-channel GaAs MOSFETs on Semi-Insulating Substrates”, IEEE International Electron Devices Meeting, IEDM Tech. Dig. 943 (1996).
3. M. Hong, J. Kwo, T. D. Lin, and M. L. Huang, “InGaAs Metal Oxide Semiconductor Devices with Ga2O3(Gd2O3) high k Dielectrics for Science and technology beyond Si CMOS”, MRS Bulletin, 34, 514-521 (2009).
4. Y. J. Lee, C. H. Lee, L. T. Tung, T. Y. Lai, J. Kwo, C.-H. Hsu, and M. Hong, “Al2O3/Ga2O3(Gd2O3) passivation on In0.20Ga0.80As/GaAs-structural intactness with high temperature annealing”, Journal of physics D-Applied physics, 43, 135101 (2010).
5. M. Hong, Z. H. Lu, J. Kwo, A. R. Kortan, J. P. Mannaerts, J. J. Krajewski, K. C. Hsieh, L. J. Chou, and K. Y. Cheng, "Initial Growth of Ga2O3(Gd2O3) on GaAs – Key to The Attainment of a Low Interfacial Density of States”, Appl. Phys. Lett., 76, 312 (2000).
6. J. Kwo, D. W. Murphy, M. Hong, J. P. Mannaerts, R. L. Opila, R. L. Masaitis, and A. M. Sergent, "Passivation of GaAs Using Gallium-Gadolinium Oxides”, J. Vac. Sci. Technol. B 17, 1294-1296 (1999).
7. A. R. Kortan, M. Hong, J. Kwo, J. P. Mannaerts, and N. Kopylov, “Structure of Epitaxial Gd2O3 Films Grown on GaAs (100)”, Physical Review B, 60, 10913 (1999).
8. E. J. Nelson, J. C. Woicik, M. Hong, J. Kwo, and J. P. Mannaerts, “Extend X-ray absorption fine-structure measurement of bond-length strain in epitaxial Gd2O3 on GaAs(001)”, Appl. Phys. Lett., 76, 2526 (2000).
9. C. Suzuki, J. Kawai, M. Takahashi, A. -M. Vlaicu, H. Adachi, and T. Mukoyama, “The electronic structure of rare-earth oxides in the creation of the core hole”, Chemical Physics, 253, 27-40 (2000).
10. Y. Yacoby, M. Sowwan, E. Stern, J. O. Cross, D. Brewe, R. Pindak, J. Pitney, E. M. Dufresne, and R. Clarke, “Direct determination of epitaxial interface structure in Gd2O3 passivation of GaAs”, Nature Materials, 1, 99 (2002).
11. M. Sowwan, Y. Yacoby, J. Cross, D. A. Walko, R. Clarke, R. Pindak, and E. A. Stern, “Direct stomic structure determination of epitaxially grown films: Gd2O3 on GaAs(100)”, Physical Review, 66, 205311 (2002).
12. D. O. Klenov, S. Stemmer, “Contributions to the contrast in experimental high-angle annular dark-field images”, Ultramicroscopy, 106, 889-901 (2006).
13. R. F. Egerton, “Electron Energy-Loss Spectroscopy in the Electron Microscope”, 2nd ed. (Plenum Press, New York, 1996).
14. K. R. Ball, P. M. Dowling, T. K. Sham, T. Regier, R.I.R. Blyth, and J. Thompson, “Therapeutic mechanism of Gallium preliminary Ga L2,3 XANES studies”, Canadian light source activity report (2007).
15. M. W. Chu, S. C. Liou, C. P. Chang, F. S. Choa, C. H. Chen, “Emergent chemical mapping at atomic-column resolution by energy-dispersive X-ray spectroscopy in an aberration-correction electron microscope”, Physical review letters, 104, 196101 (2010).
16. Paul D. Robb and Alan J. Craven, “Column ratio mapping: A processing technique for atom resolution high-angle annular dark-field (HAADF) images”, Ultramicroscopy, 109, 61-69 (2008).
17. http://www.totalresolution.com/CrystalKit.htm
18. P. A. Stadelmann, “EMS- a software package for electron diffraction analysis and HREM images simulation in materials science”, Ultramicroscopy, 21, 131-145 (1987).
Ch. 5
1. M. Hong, J. Kwo, S. N. G. Chu, J. P. Mannaerts, A. R. Kortan, H. M. Ng, A. Y. Cho, K. A. Anselm, C. M. Lee, and J. I. Chyi, “Single-crystal GaN/Gd2O3/GaN heterostructure”, J. Vac. Sci. Technol. B, 20, 1274 (2002).
2. M. Zinkevich, “Thermodynamics of rare earth sequioxides”, Progress in Material Science, 52, 597-647 (2007).
3. W. H. Chang, C. H. Lee, P. Chang, Y. C. Chang, Y. J. Lee, J. Kwo, C. C. Tsai, J. M. Hong, C. H. Hsu, and M. Hong, “High Κ dielectric single-crystal monoclinic Gd2O3 on GaN with excellent thermal, structural, and electrical properties”, Journal of crystal growth, 311, 2183-2186 (2009).
4. A. Molle, C. Wiemer, Md. N. K. Bhulyan, G. Tallarida, M. Fanciulli, and G. Pavia, “Cubic-to-monoclinic phase transition during the epitaxial growth of crystalline Gd2O3 films on Ge(001) substrates”, Appl. Phys. Lett., 90, 193511 (2007).
5. S. Cotton, “Lanthanide and Actinide Chemistry”, 2006.
6. Ch. Gerth, A. G. Kochur, M. Groen, T. Luhmann, M. Richter, and P. Zimmermann, “4d-1 multiplet structure of rare earth atoms studied by photoelectron-ion coincidencd spectroscopy”, Phys. Rev. A, 57, 3523 (1998).
7. X. F. Wang, Q. Li, and M. S. Moreno, “Effect of Al and Y incorporation on the structure of HfO2”, Journal of Appl. Phys., 104, 093529 (2008).
8. F. Pailloux, M. Jublot, R. J. Gaboriaud, M. Jaouen, and F. Paumier, ”Interfacial phase in epitaxial growth of Y2O3 ¬and MgO studied via combining electron energy-loss spectroscopy and real-space self-consistent full multiple scattering calculations”, Phys. Rev. B, 72, 125425 (2005).
9. J. H. Baeck, S. A. Park, W. J. Lee, I. S. Jeong, K. Jeong, M. –H. Cho, Y. K. Kim, B. G. Min, and D. H. Ko, “Electronic and structural characteristics of Zr-incorporated Gd2O3 films on strained SiGe substrates”, the journal of chemical physics, 130, 204510 (2009).
10. D. W. McComb, “Bonding and electronic structure in zirconia pseudopolymorphs investigated by electron energy-loss spectroscopy”, Phys. Rev. B, 54, 7094 (1996).
11. A. Harvey, B. Guo, I. Kennedy, S. Risbud, and V. Leppert, “A systematic study of the oxygen K edge in the cubic and les common monoclinic phase of the rare earth oxides (Ho, Er, Tm, Yb) by electron energy loss spectroscopy”, J. Phys.: Condens. Matter, 18, 2181-2189 (2006).
12. R. G. Burns, “Mineralogical applications of crystal field theory”, Cambridge univ. Press, Cambridge (1970).
13. C. Hebert, M. Willinger, D.S. Su, P. Pongratz, P. Schattschneider, and R. Schlog, “Oxygen K-edge in vanadium oxides: simulations and experiments”, Eur. Phys. J. B 28, 407-414 (2002).
14. Y. B. Losovyj, D. Wooten, J. C. Santana, J. M. An, K. D. Belashchenko, N. Lozova, J. Petrosky, A. Sokolov, J. Tang, W. Wang, N. Arulsamy, and P. A. Dowben, “Comparison of n-type Gd2O3 and Gd-doped HfO2”, J. Phys: Condens. Matter, 21, 045602 (2009).
15. “Binary rare earth oxides“ edited by G. Adachi, N. Imanaka, and Z. C. Kang (2005).
16. L. Soriano, M. Abbate, J. C. Fuggle, M. A. Jiménez, J. M. Sanz, C. Mythen and H. A. Padmore, ”The O 1s x-ray absorption spectra of transition-metal oxides: the TiO2-ZrO2-HfO2 and V2O5-Nb2O5-Ta2O5”, Solid state communications, 87, 699-703 (1993).
17. J. P. Crocombette and F. Jollet, “Site selectivity in ZrO2 doped Y2O3 evidenced by x-ray absorption spectra calculations”, J. Phys: Condens. Matter, 6, 8341-8348 (1994).
18. X. F. Wang, Q. Li, P. F. Lee, J. Y. Dai, and X. G. Gong, “Characterization of the interface between the Hf-based high κ thin film and the Si using spatially resolved electron energy-loss spectroscopy”, Micron, 41, 15-19 (2010).