簡易檢索 / 詳目顯示

研究生: 徐瑩軒
Hsu, Ying-Hsuan
論文名稱: 探討人類LRRK2和Tau在果蠅多巴胺神經元 的相互作用
The genetic interaction between human LRRK2 and Tau in Drosophila dopaminergic neuron
指導教授: 張慧雲
Chang, Hui-Yun
口試委員: 桑自剛
Sang, Tzu-Kang
范聖興
Fan, Seng-Sheen
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 系統神經科學研究所
Institute of Systems Neuroscience
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 46
中文關鍵詞: 帕金森氏症多巴胺
外文關鍵詞: Tau, dopaminergic neuron
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Leucine-rich repeat kinase 2 (LRRK2) 是帕金森氏症的一個致病基因,其突變可以在偶發性和遺傳性的帕金森氏症病人中發現。LRRK2突變常伴隨著α-synuclein,路易氏體 (Lewy body) 和Tau蛋白的不正常堆積。然而,在我們最近的研究中發現野生型的LRRK2在果蠅中扮演保護的角色。在這裡我們用Gal4/UAS系統,在果蠅的多巴胺神經元內同時表現野生型的人類LRRK2和野生型的人類Tau蛋白,研究兩者的關聯性。在我們的實驗中,發現在多巴胺神經元表現LRRK2能使表現Tau的果蠅壽命延長,而且其運動能力在早期也有所恢復,不僅如此,被視為是不正常的磷酸化Tau的量也因此減少。另外,我們將螢光蛋白標記在粒線體上,用於觀察粒線體在多巴胺神經元的堆積情形,我們發現LRRK2不能使Tau在PAL和PPM3不正常堆積的粒線體回復。整體而言,野生型LRRK2能夠保護Tau對果蠅造成的毒性,但不是透過回復軸突內粒線體的累積。


    Leucine-rich repeat kinase 2 (LRRK2) mutations has been found to associate with sporadic and familial PD. It accompanied with abnormal protein accumulation, like α-synuclein, Lewy body and microtubule-associated protein Tau (MAPT) pathology in human. However, we recently found the protective role of wild type LRRK2 in the model organism. Here, we used UAS/Gal4 system to study the interaction between human LRRK2 and Tau. We co-expressed wild type human LRRK2 and Tau in Drosophila dopaminergic neurons. In our study, we found that wild type LRRK2 could extend Tau induced short lifespan, recovered motor disability in early age and decreased abnormal hyper-phosphorylated Tau. Additionally, we used fluorescent protein, DsRed, to label mitochondrion and observed the increase of abnormal axonal mitochondrial localization and their accumulation in dopaminergic neurons caused by Tau expression.
    We found that LRRK2 barely reversed the Tau induced abnormal axonal mitochondrial accumulation in PAL and PPM3 dopaminergic neurons. In summary, human wild-type LRRK2 may protect dopaminergic neurons from Tau pathology but not through reversing axonal mitochondrial accumulation.

    中文摘要 ........................................................................................................................... I Abstract ............................................................................................................................. II 致謝 ................................................................................................................................ III Introduction ...................................................................................................................... 1 Materials and methods ...................................................................................................... 6 Fly strains and genetics ............................................................................................................. 6 Lifespan assay ........................................................................................................................... 6 Behavioral analysis ................................................................................................................... 6 Immunohistochemistry and confocal images ............................................................................ 7 Semi-Quantification by Image J ................................................................................................ 8 Result ................................................................................................................................ 9 LRRK2/Tau double transgenic flies had extended lifespan compared with Tau ...................... 9 LRRK2/Tau double transgenic flies showed improved motor ability at early age ................. 10 Phosphorylated Tau decreased in double transgenic LRRK2/Tau .......................................... 10 Age-dependent accumulation of mitochondria in axons were not altered in double transgenic LRRK2/Tau flies ..................................................................................................................... 12 PAL and PPM3 had the earliest phenotypes of mitochondrial accumulation ......................... 14 Discussion ....................................................................................................................... 16 Figures ............................................................................................................................ 20 Figure 1. Lifespan in transgenic flies expressed WT hTau and WT hLRRK2 in tyrosine hydroxylase neurons. ............................................................................................................... 21 Figure 2. Motor activity in hTau and hLRRK2 group with aging. .......................................... 23 Figure 3. Phosphorylation Tau in hTau and hLRRK2 group. ................................................. 24 Figure 4. Mitochondrion in TH neuron were identified by TH-GAL4>UAS-MitoDsRed expression. ............................................................................................................................... 26 VI Figure 5. Mitochondrial tracks in different Tau transgenic lines. ........................................... 27 Figure 6. Mitochondria tracks do not exist after eclosion. ...................................................... 28 Figure 7. Mitochondrial tracks may belong to PAL, PPM3 neurons. ..................................... 29 Figure 8. Mitochondrial accumulation in PAL axon. .............................................................. 31 Figure 9. Mitochondrial accumulation in PPM3 axons. .......................................................... 33 Appendix ........................................................................................................................ 35 Figure 1. Mitochondrial pattern in PAL track at day 1. .......................................................... 35 Figure 2. Mitochondrial pattern in PPM3 track at day 1. ........................................................ 36 Figure 3. Projection of PPM3 track at 1-week-old flies. ......................................................... 37 Figure 4. Area of PAL selected to be quantified. .................................................................... 38 References ...................................................................................................................... 39

    Baird, G. S., Zacharias, D. A., & Tsien, R. Y. (2000). Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral. Proc Natl Acad Sci U S A, 97(22), 11984-11989.
    Biskup, S., Moore, D. J., Celsi, F., Higashi, S., West, A. B., Andrabi, S. A., . . . Dawson, V. L. (2006). Localization of LRRK2 to membranous and vesicular structures in mammalian brain. Ann Neurol, 60(5), 557-569. doi: 10.1002/ana.21019
    Biskup, S., Moore, D. J., Celsi, F., Higashi, S., West, A. B., Andrabi, S. A., . . . Dawson, V. L. (2006). Localization of LRRK2 to membranous and vesicular structures in mammalian brain. Ann Neurol, 60(5), 557-569. doi: 10.1002/ana.21019
    Botella, J. A., Bayersdorfer, F., Gmeiner, F., & Schneuwly, S. (2009). Modelling Parkinson's disease in Drosophila. Neuromolecular Med, 11(4), 268-280. doi: 10.1007/s12017-009-8098-6
    Damiano, M., Galvan, L., Déglon, N., & Brouillet, E. (2010). Mitochondria in Huntington's disease. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1802(1), 52-61. doi: http://dx.doi.org/10.1016/j.bbadis.2009.07.012
    de Lau, L. M. L., & Breteler, M. M. B. (2006). Epidemiology of Parkinson's disease. The Lancet Neurology, 5(6), 525-535. doi: 10.1016/s1474-4422(06)70471-9
    Fahn, S. (2003) Description of Parkinson's disease as a clinical syndrome. Vol. 991. Annals of the New York Academy of Sciences (pp. 1-14).
    Friggi-Grelin, F., Coulom, H., Meller, M., Gomez, D., Hirsh, J., & Birman, S. (2003). Targeted gene expression in Drosophila dopaminergic cells using regulatory sequences from tyrosine hydroxylase. Journal of Neurobiology, 54(4), 618-627. doi: 10.1002/neu.10185
    Higashi, S., Biskup, S., West, A. B., Trinkaus, D., Dawson, V. L., Faull, R. L. M., . . . Emson, P. C. (2007). Localization of Parkinson’s disease-associated LRRK2 in normal and pathological human brain. Brain research, 1155, 208-219. doi: http://dx.doi.org/10.1016/j.brainres.2007.04.034
    Hosoi, T., Uchiyama, M., Okumura, E., Saito, T., Ishiguro, K., Uchida, T., . . . Hisanaga, S.-i. (1995). Evidence for cdk5 as a Major Activity Phosphorylating Tau Protein in Porcine Brain Extract. The Journal of Biochemistry, 117(4), 741-749.
    Hu, Y., Li, X.-C., Wang, Z.-h., Luo, Y., Zhang, X., Liu, X.-P., . . . Liu, G.-P. (2016a). Tau accumulation impairs mitophagy via increasing mitochondrial membrane potential and reducing mitochondrial Parkin.
    Hu, Y., Li, X.-C., Wang, Z.-h., Luo, Y., Zhang, X., Liu, X.-P., . . . Liu, G.-P. (2016b). Tau accumulation impairs mitophagy via increasing mitochondrial membrane potential and reducing mitochondrial Parkin. oncotarget, 7(14), 17356-17368. doi: 10.18632/oncotarget.7861
    Jaleel, M., Nichols, R. J., Deak, M., Campbell, David G., Gillardon, F., Knebel, A., & Alessi, Dario R. (2007a). LRRK2 phosphorylates moesin at threonine-558: characterization of how Parkinson's disease mutants affect kinase activity. Biochemical Journal, 405(2), 307-317. doi: 10.1042/bj20070209
    Jaleel, M., Nichols, R J., Deak, M., Campbell, David G., Gillardon, F., Knebel, A., & Alessi, Dario R. (2007b). LRRK2 phosphorylates moesin at threonine-558: characterization of how Parkinson's disease mutants affect kinase activity. Biochemical Journal, 405(Pt 2), 307-317. doi: 10.1042/BJ20070209
    Jankovic, J. (2008). Parkinson’s disease: clinical features and diagnosis. Journal of Neurology, Neurosurgery & Psychiatry, 79(4), 368-376. doi: 10.1136/jnnp.2007.131045
    Jorgensen, N. D., Peng, Y., Ho, C. C. Y., Rideout, H. J., Petrey, D., Liu, P., & Dauer, W. T. (2009). The WD40 Domain Is Required for LRRK2 Neurotoxicity. PLOS ONE, 4(12), e8463. doi: 10.1371/journal.pone.0008463
    Kahsai, L., & Winther, A. M. (2011). Chemical neuroanatomy of the Drosophila central complex: distribution of multiple neuropeptides in relation to neurotransmitters. J Comp Neurol, 519(2), 290-315. doi: 10.1002/cne.22520
    Kawakami, F., Yabata, T., Ohta, E., Maekawa, T., Shimada, N., Suzuki, M., . . . Obata, F. (2012). LRRK2 Phosphorylates Tubulin-Associated Tau but Not the Free Molecule: LRRK2-Mediated Regulation of the Tau-Tubulin Association and Neurite Outgrowth. PLOS ONE, 7(1), e30834. doi: 10.1371/journal.pone.0030834
    Kong, E. C., Woo, K., Li, H., Lebestky, T., Mayer, N., Sniffen, M. R., . . . Wolf, F. W. (2010). A Pair of Dopamine Neurons Target the D1-Like Dopamine Receptor DopR in the Central Complex to Promote Ethanol-Stimulated Locomotion in Drosophila. PLOS ONE, 5(4), e9954. doi: 10.1371/journal.pone.0009954
    Kowall, N. W., & Kosik, K. S. (1987). Axonal disruption and aberrant localization of tau protein characterize the neuropil pathology of Alzheimer's disease. Ann Neurol, 22(5), 639-643. doi: 10.1002/ana.410220514
    Li, X.-C., Hu, Y., Wang, Z.-h., Luo, Y., Zhang, Y., Liu, X.-P., . . . Wang, J.-Z. (2016). Human wild-type full-length tau accumulation disrupts mitochondrial dynamics and the functions via increasing mitofusins. Scientific Reports, 6, 24756. doi: 10.1038/srep24756
    http://www.nature.com/articles/srep24756#supplementary-information
    Lin, C.-H., Tsai, P.-I., Wu, R.-M., & Chien, C.-T. (2010a). <em>LRRK2</em> G2019S Mutation Induces Dendrite Degeneration through Mislocalization and Phosphorylation of Tau by Recruiting Autoactivated GSK3β. The Journal of Neuroscience, 30(39), 13138-13149. doi: 10.1523/jneurosci.1737-10.2010
    Lin, C.-H., Tsai, P.-I., Wu, R.-M., & Chien, C.-T. (2010b). LRRK2 G2019S Mutation Induces Dendrite Degeneration through Mislocalization and Phosphorylation of Tau by Recruiting Autoactivated GSK3β. The Journal of Neuroscience, 30(39), 13138-13149. doi: 10.1523/jneurosci.1737-10.2010
    Lin, C. H., Tsai, P. I., Wu, R. M., & Chien, C. T. (2010). LRRK2 G2019S mutation induces dendrite degeneration through mislocalization and phosphorylation of tau by recruiting autoactivated GSK3ss. J Neurosci, 30(39), 13138-13149. doi: 10.1523/JNEUROSCI.1737-10.2010
    Liu, G., Seiler, H., Wen, A., Zars, T., Ito, K., Wolf, R., . . . Liu, L. (2006). Distinct memory traces for two visual features in the Drosophila brain. Nature, 439(7076), 551-556. doi: http://www.nature.com/nature/journal/v439/n7076/suppinfo/nature04381_S1.html
    Liu, Q., Liu, S., Kodama, L., Driscoll, M. R., & Wu, M. N. (2012). Two dopaminergic neurons signal to the dorsal fan-shaped body to promote wakefulness in Drosophila. Curr Biol, 22(22), 2114-2123. doi: 10.1016/j.cub.2012.09.008
    Liu, Z., Wang, X., Yu, Y., Li, X., Wang, T., Jiang, H., . . . Smith, W. W. (2008). A Drosophila model for LRRK2-linked parkinsonism. Proc Natl Acad Sci U S A, 105(7), 2693-2698. doi: 10.1073/pnas.0708452105
    Maldonado, H., Ramírez, E., Utreras, E., Pando, M. E., Kettlun, A. M., Chiong, M., . . . Valenzuela, M. A. (2011). Inhibition of Cyclin-Dependent Kinase 5 but Not of Glycogen Synthase Kinase 3-β Prevents Neurite Retraction and Tau Hyperphosphorylation Caused by Secretable Products of Human T-Cell Leukemia Virus Type I-Infected Lymphocytes. Journal of Neuroscience Research, 89(9), 1489-1498. doi: 10.1002/jnr.22678
    Mao, Z., & Davis, R. L. (2009). Eight different types of dopaminergic neurons innervate the Drosophila mushroom body neuropil: anatomical and physiological heterogeneity. Front Neural Circuits, 3, 5. doi: 10.3389/neuro.04.005.2009
    Meixner, A., Boldt, K., Van Troys, M., Askenazi, M., Gloeckner, C. J., Bauer, M., . . . Ueffing, M. (2011). A QUICK Screen for Lrrk2 Interaction Partners – Leucine-rich Repeat Kinase 2 is Involved in Actin Cytoskeleton Dynamics. Molecular & Cellular Proteomics, 10(1). doi: 10.1074/mcp.M110.001172
    Melrose, H. L., Dachsel, J. C., Behrouz, B., Lincoln, S. J., Yue, M., Hinkle, K. M., . . . Farrer, M. J. (2010). Impaired dopaminergic neurotransmission and microtubule-associated protein tau alterations in human LRRK2 transgenic mice. Neurobiol Dis, 40(3), 503-517. doi: 10.1016/j.nbd.2010.07.010
    Moreira, P. I., Carvalho, C., Zhu, X., Smith, M. A., & Perry, G. (2010). Mitochondrial dysfunction is a trigger of Alzheimer's disease pathophysiology. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1802(1), 2-10. doi: http://dx.doi.org/10.1016/j.bbadis.2009.10.006
    Narendra, D., Tanaka, A., Suen, D.-F., & Youle, R. J. (2008). Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. The Journal of Cell Biology, 183(5), 795-803. doi: 10.1083/jcb.200809125
    Obeso, J., Rodrguez-Oroz, M., Benitez Temino, B., Blesa, F., Guridi, J., Marin, C., & Rodriguez, M. (2008). Functional organization of the basal ganglia: Therapeutic implications for Parkinson's disease. Movement disorders, 23(S3), S548-S559.
    Ohta, E., Kawakami, F., Kubo, M., & Obata, F. (2011). LRRK2 directly phosphorylates Akt1 as a possible physiological substrate: Impairment of the kinase activity by Parkinson’s disease-associated mutations. FEBS Letters, 585(14), 2165-2170. doi: http://dx.doi.org/10.1016/j.febslet.2011.05.044
    Ohta, E., Kawakami, F., Kubo, M., & Obata, F. (2012). LRRK2 directly phosphorylates Akt1 as a possible physiological substrate: impairment of the kinase activity by Parkinson's disease-associated mutations. Journal of neurochemistry, 123(supplement), 104-104.
    Parkinson, J. (2002). An Essay on the Shaking Palsy. The Journal of Neuropsychiatry and Clinical Neurosciences, 14(2), 223-236. doi: 10.1176/jnp.14.2.223
    Reddy, P. H. (2011). Abnormal Tau, Mitochondrial Dysfunction, Impaired Axonal Transport of Mitochondria, and Synaptic Deprivation in Alzheimer’s Disease. Brain research, 1415, 136-148. doi: 10.1016/j.brainres.2011.07.052
    Seirafi, M., Kozlov, G., & Gehring, K. (2015). Parkin structure and function. The Febs Journal, 282(11), 2076-2088. doi: 10.1111/febs.13249
    Shanley, M. R., Hawley, D., Leung, S., Zaidi, N. F., Dave, R., Schlosser, K. A., . . . Liu, M. (2015). LRRK2 Facilitates tau Phosphorylation through Strong Interaction with tau and cdk5. Biochemistry, 54(33), 5198-5208. doi: 10.1021/acs.biochem.5b00326
    Sperbera, B. R., Leight, S., Goedert, M., & Lee, V. M. Y. (1995). Glycogen synthase kinase-3β phosphorylates tau protein at multiple sites in intact cells. Neuroscience Letters, 197(2), 149-153. doi: https://doi.org/10.1016/0304-3940(95)11902-9
    Steger, M., Tonelli, F., Ito, G., Davies, P., Trost, M., Vetter, M., . . . Mann, M. (2016). Phosphoproteomics reveals that Parkinson's disease kinase LRRK2 regulates a subset of Rab GTPases. eLife, 5, e12813. doi: 10.7554/eLife.12813
    Strauss, R. (2002). The central complex and the genetic dissection of locomotor behaviour. Current Opinion in Neurobiology, 12(6), 633-638. doi: https://doi.org/10.1016/S0959-4388(02)00385-9
    Thomas, J. M., Li, T., Yang, W., Xue, F., Fishman, P. S., & Smith, W. W. (2017). 68 and FX2149 Attenuate Mutant LRRK2-R1441C-Induced Neural Transport Impairment. Frontiers in Aging Neuroscience, 8(337). doi: 10.3389/fnagi.2016.00337
    Wang, X., Yan, M. H., Fujioka, H., Liu, J., Wilson-Delfosse, A., Chen, S. G., . . . Zhu, X. (2012). LRRK2 regulates mitochondrial dynamics and function through direct interaction with DLP1. Hum Mol Genet, 21(9), 1931-1944. doi: 10.1093/hmg/dds003
    Wang, Y., & Mandelkow, E. (2016). Tau in physiology and pathology. Nat Rev Neurosci, 17(1), 22-35. doi: 10.1038/nrn.2015.1
    Winklhofer, K. F., & Haass, C. (2010). Mitochondrial dysfunction in Parkinson's disease. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1802(1), 29-44. doi: http://dx.doi.org/10.1016/j.bbadis.2009.08.013
    Wu, T.-H., Lu, Y.-N., Chuang, C.-L., Wu, C.-L., Chiang, A.-S., Krantz, D. E., & Chang, H.-Y. (2013). Loss of vesicular dopamine release precedes tauopathy in degenerative dopaminergic neurons in a Drosophila model expressing human tau. Acta Neuropathologica, 125(5), 711-725. doi: 10.1007/s00401-013-1105-x
    Xiong, Y., Dawson, V. L., & Dawson, T. M. (2012). LRRK2 GTPase Dysfunction in the Pathogenesis of Parkinson’s disease. Biochemical Society transactions, 40(5), 1074-1079. doi: 10.1042/BST20120093
    Yun, H. J., Kim, H., Ga, I., Oh, H., Ho, D. H., Kim, J., . . . Seol, W. (2015). An early endosome regulator, Rab5b, is an LRRK2 kinase substrate. The Journal of Biochemistry, 157(6), 485-495. doi: 10.1093/jb/mvv005
    Zhu, Y., Wang, C., Yu, M., Cui, J., Liu, L., & Xu, Z. (2013). ULK1 and JNK are involved in mitophagy incurred by LRRK2 G2019S expression. Protein & Cell, 4(9), 711-721. doi: 10.1007/s13238-013-3910-3

    無法下載圖示 全文公開日期 2019/07/27 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE