簡易檢索 / 詳目顯示

研究生: 何金原
King-Yuan Ho
論文名稱: 利用間歇光輔助的濕蝕刻方式發展氮化鎵的奈米級蝕刻技術
Development of Nano-Scale Etching Technique on GaN by CPAWE
指導教授: 黃惠良
Huey-Liang Hwang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 58
中文關鍵詞: 氮化鎵光電化學蝕刻間歇光
外文關鍵詞: GaN, Chopped, PEC
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光電化學蝕刻是一種利用光輔助的濕蝕刻方式,具有低蝕刻缺陷和高蝕刻速率的特性,而廣泛應用在純態和N型氮化鎵蝕刻上。然而,傳統光電化學蝕刻所發生的側向蝕刻深度分佈的問題,透過以過硫酸鉀作為氧化劑來取代光電化學蝕刻中的電極所發展出的無電極光電化學蝕刻可以成功的解決這個問題。最後,利用間歇光輔助的光電化學蝕刻讓我們成功的達到大面積的平整蝕刻表面,表面的平均粗糙度更達到0.37nm。透過這些成就,我們提出這種利用間歇光輔助的方式來製造平坦的蝕刻表面,以便於應用在之後的奈米點沈積或甚至是奈米級結構的蝕刻技術。
    要製作一個發光二極體,發展一個技術能夠直接蝕刻穿過p-i-n結構是必要的。然而對傳統的光電化學蝕刻來說,P型氮化鎵的蝕刻一直是很大的問題且是我們必須克服的。透過間歇光輔助的光電化學蝕刻,我們成功的完成了P型氮化鎵的光電化學蝕刻,並且完成了最簡易的發光二極體的製作。
    最後,為了完成我們的目標-奈米級的蝕刻技術,我們建立了奈米微影的技術來製造奈米級的蝕刻光罩。在本實驗中,我們使用電子束微影技術來完成我們的奈米結構,金和PMMA都被用來當作蝕刻的光罩。我們利用間歇光輔助濕蝕刻的方式控制在擴散極限的狀態下成功的蝕刻出將近100奈米的直線。從本研究中,我們驗證了間歇光輔助濕蝕刻的方式在奈米等級結構蝕刻的特性,並且確信其能應用在奈米級發光元件的製作上。


    Photoelectrochemical etching (PEC) is a photon assisted wet etching. Low damage and high etching rate makes it a good method for etching n-type GaN. By using K2S2O8 as the oxidizing agent, the technique of electrodless photoeletro-
    chemical etching (ELPEC) was built to improve the problem of lateral distribution of etching depth in conventional PEC etching. Finally, the chopped photon assisted photoelectrochemical etching makes it possible to produce a broad area smooth etching surface and the root-mean square roughness is 0.37nm. According to this achievement, we propose that the chopped photon assisted wet etching can be used to create smooth etching surface for nano-dot deposition and even the nano-scale structure etching technique.
    To fabricate a light emitting diode (LED), etch through the p-i-n structure is necessary and the p-type etching is a main problem for PEC etching that we have to overcome. By using the chopped photon assisted wet etching (CPAWE) method, we have the ability of etching p-type GaN and then create the simplest LED device successfully with the p-i-n structure sample.
    Finally, to achieve our goal to complete the nano scale etching technique, we must establish a nano-lithography technique to create the nano scale etching mask. E-beam lithography is adopted to fabricate our nano structure. Both gold and PMMA were used as etching mask in this experiment. A near 100nm straight line is produced by chopped photon assisted wet etching at diffusion limit etching condition. From this research, we prove the property of nano-scale etching with CPAWE and it can be used to fabricate a nano scale light emission device.

    Chinese Abstract English Abstract Acknowledgements Contents List of Figures Chap. 1 Introduction 1.1 Key issues for high luminant light emitting diode fabrication 1.1.1 Dislocation issue 1.1.2 Doping issue 1.1.3 P-GaN ohmic contact issue 1.1.4 Etching issue 1.2 Chopped photon assisted wet etching (CPAWE) 1.3 Reference Chap. 2 Mechanism 2.1 Photoelectrochemical ( PEC ) Etching 2.1.1 Chopped Photon Assisted Wet Etching ( CPAWE ) 2.1.2 P-GaN etching by CPAWE 2.2 Nano-lithography 2.2.1 E-beam lithography 2.3 Reference Chap. 3 Experiment apparatus, process and Measurement 3.1 Experiment system 3.2 Measurement 3.3 Experiment Process 3.3.1 P-type GaN etching 3.3.2 Nano-scale etching technique 3.4 Reference Chap. 4 Results and discussion 4.1 P-GaN etching by CPAWE 4.1.1 Under-cut effect 4.1.2 Frequency dependence 4.2 Nano-scale etching ability 4.2.1 E-beam lithography 4.2.2 Nano-scale etching profile by CPAWE 4.3 Reference Chap. 5 Conclusions Figures Appendix I. Defect mask II. Determination of absolute luminous efficiency III. Reference IV. Figures

    chap 1
    [1]Chih-Hsin Ko, Yan-Kuin Su, Shoou-Jinn Chang, Ta-Ming Kuan, Chung-I Chiang, Wen-How Lan, Wen-Jen Lin and James Webb, Jpn. J. Appl. Phys., Vol. 41, 2489-2492 (2002)
    [2]Toshio Nishida, Tomoyuki Ban, and Naoki Kobayashi, Jpn. J. Appl. Phys., 2273 (2003)
    [3]Koichi Tachibana, Takao Someya, Satomi Ishida, and Yasuhiko Arakawa, Appl. Phys. Lett., Vol. 76, No. 22, 3212 (2000)
    [4]P. A. Crozier, J. Tolle, J. Kouvetakis, and Cole Ritter, Appl. Phys. Lett. Vol. 84, No. 18, 3441 (2004)
    [5]W. Walukiewicz, Physica B, Vol. 302-303, 123-134 (2001)
    [6]Tetsuya Yamamoto, and Hiroshi Katayama-Youshida, Jpn. J. Appl. Phys., Vol. 36, L180-L183 (1997)
    [7]H. Katayama-Youshida, and T. Yamamoto, Phys. Stat. Sol. (b), Vol. 202, 763 (1997)
    [8]Tetsuya Yamamoto, and Hiroshi Katayama-Youshida, Journal of Crystal Growth Vol. 189/190, 532-536 (1998)
    [9]G. Kipshidze, V. Kuryatkov, B. Borisov, Yu. Kuryavtsev, R. Asomoza, S. Nikishin, and H. Temkin, Appl. Phys. Lett., Vol. 80, No. 16 2910 (2002)
    [10]T. Yamamoto, Phys. Stat. Sol. (a), Vol. 193, No. 3, 423-433 (2002)
    [11]Oliver Brandt, Hui Yang, Helmar Kostial, and Kaus H. Ploog, Appl. Phys. Lett., Vol. 69, No. 18, 2707 (1996)
    [12] H. Katayama-Youshida, T. Nishimatsu, T. Yamamoto, and N Orita, J. Phys.: Condens. Matter, Vol. 13, 8901-8914 (2001)
    [13]R. Y. Korotkov, J. M. Gregie, and B. W. Wessels, Appl. Phys. Lett., Vol. 78, No. 2, 222 (2001)
    [14] H. Katayama-Youshida, R. Kato, and T. Yamamoto, J. Crys. Growth, Vol. 231, 428-436 (2001)
    [15] R. Y. Korotkov, J. M. Gregie, and B. W. Wessels, Opto-Electronics Review, Vol. 10, No. 4, 243-249 (2002)
    [16]Peter Kozodoy, Yulia P Smorchkova, Monica Hansen, Huili Xing, Steven P. Denbaars, and Umesh K. Mishra, Appl. Phys. Lett., Vol. 75, No. 16, 2444 (1999)
    [17]M. S. Minskey, M. White, and E. L. Hu, Appl. Phys. Lett., Vol. 68, 1531 (1996)
    [18]C. Youtsey, I. Adesida, L.T. Romano, and G.. Bulman, Appl. Phys. Lett., Vol. 72, 560 (1998)
    [19]C. Youtsey and I. Adesida, Appl. Phys. Lett., Vol. 71, 2151 (1997).
    chap 2
    [1]C. Youtsey, I. Adesida, and G. Bulman, Appl. Phys. Lett., Vol. 71, 2151 (1997)
    [2]C. Youtsey, I. Adesida, T. Romano, and G. Bulman, Appl. Phys. Lett., Vol. 72, 560 (1998)
    [3]B. S. Shelton, T. G. Zhu, M. M. Wong, H. K. Kwon, C. J. Eiting, D. J. H. Lambert,S. P. Turini, and R. D. Dupuis, Electrochem. Solid-State Lett., Vol. 3, 87 (2000)
    [4] J. A. Bardwell, J. B. Webb, H. Tang, J. Fraser, and S. Moisa, J. Appl. Phys., Vol. 89, No. 7, 4142 (2001)
    [5]Z. H. Hwang, J. M. Hwang, and H. L. Hwang, and W. H. Hung, Appl. Phys. Lett., Vol. 84, No. 19, 3759 (2004)
    [6]S. Chandra, S. L. Singh, and N. Khare, J. Appl. Phys. Vol. 59, 1570 (1986)
    [7]D. J. Fu, T. W. Kang, S. U. Yuldashev, N. H. Kim, S. H. Park. J. S. Yun, and K. S. Chung, Appl. Phys. Lett., Vol. 78, 1309 (2001)
    [8]Jeon Wook Yang, Byung-Mok Kim, Chang-Joo Yoon, Gye-Mo Yang, and Hyung-Jae Lee, Electronics Letters, Vol. 36, No. 1, 88 (2000)
    [9]J. E. Borton, C. Cai, M. I. Nathan, P. Chow, J. M. Van Hove, A. Wowchak, and H. Morkoc, Appl. Phys. Lett., Vol. 77, No. 8, 1227 (2000)
    [10]Chen-Jen Hung, Lara I. Halaouui, Allen J. Bard, Paul A. Grudowski, Russell D. Dupuis, Jay Molstad, and Francis J. DiSalvo, Electrochemical and Solid-State Letters, Vol. 1, No. 3, 142-144 (1998)
    [11]Stephen Y. Chou, a)Peter R. Krauss, Wei Zhang, Lingjie Guo, and Lei Zhuang, J. Vac. Sci. Technol. B 15(6), 2897 (1997)
    [12]Kathryn Wilder, Calvin F. Quate, Bhanwar Singh, and David F. Kyser, J. Vac. Sci. Technol. B Vol. 16, No. 6, 3864 (1998)
    [13]T. R. Groves, D. Pickard, B. Rafferty, N. Crosland, D. Adam, G. Schubert, Microelectronics Engineering, Vol. 61-62, 285-293 (2002)
    [14]Th. Weimann, H. Scherer, P. Hinze, and J. Niemeyer, Microelectronic Engineering, Vol. 53, 225-228 (2000)
    [15]F. Calle, T. Palacios, E. Monroy, J.Grajal, M. Verdu, Z. Bougrioua, I. Moerman, J. Materials science: Materials in electronics, Vol. 14, 271-277 (2003)
    [16]I. Raptis, N. Glezos, E. Valamontes, E. Zervas, P. Argitis, Vacuum, Vol. 62, 263-271 (2001)
    chap 3
    [1] Z. H. Hwang, J. M. Hwang, and H. L. Hwang, and W. H. Hung, Appl. Phys. Lett., Vol. 84, No. 19, 3759 (2004)
    chap 4
    [1]J. T. Hsieh, J. M. Hwang, and H. L. Hwang, MRS, 1998
    [2]Z. H. Hwang, J. M. Hwang, and H. L. Hwang, and W. H. Hung, Appl. Phys. Lett., Vol. 84, No. 19, 3759 (2004)
    [3] C. H. Ko, Y. K. Su, S. J. Chang, W. H. Lan, Jim Webb, M. C. Tu, Y. T. Cherng, Material Science and Engineering, Vol. B96, 43-47 (2002)
    [4]Chang-Chin Yu, Chen-Fu Chu, Juen-Yen Tsai, Hung Wen Huang, Tao-Hung Hsueh, Chia-Feng Lin, and Shing-Chung Wang, Jap. J. Appl. Phys. Vol. 41, 910-912 (2002)
    Appendix
    [1]M. Toth*, K. Fleischer, and M. R. Phillips, “Electron beam induced impurity electro-migration in unintentionally doped GaN”
    [2]M. Avella, E. de la Puentea, J. Jimenez, A. Castaldini, A. Cavallini, L. Polenta, J. Crystal Growth, Vol. 210, 220-225 (2000)
    [3]S. J. Rosner, E. C. Carr, M. J. Ludowise, G. Girolami, and H. I. Erikson, Appl. Phys. Lett., Vol. 70, No. 4, p-420 (1997)
    [4]C. Youtsey, L. T. Romano, I. Adesida, Appl. Phys. Lett., Vol. 73, No. 6, 797 (1998)
    [5]J. T. Hsieh, J. M. Hwang, H. L. Hwang, J. K. Ho, C. N. Huang, C. Y. Chen, and W. H. Hung, Electrochemical and Solid-State Letters, Vol. 3, No. 8, 395-398 (2000)
    [6]J. L. Weyher, F. D. Tichelaar, H. W. Zandbergen, L. Macht, P. R. Hageman, J. Appl. Phys. Vol. 90, No. 12, 6105 (2001)
    [7]J. L. Weyher, L. Macht, F. D. Tichelaar, H. W. Zandbergen, P. R. Hageman, P. K. Larsen, Material Science and Engineering, Vol. B91-92, 280-284 (2002)
    [8]F. Wang, R. Zhang, X. Q. Xiu, K. L. Chen, S. L. Gu, B. Shen, Y. D. Zheng, T. F. Kuech, Material Letters, Vol. 57, 1365-1368 (2003)
    [9]G. Kamler, J. L. Weyher, I. Grzegory, E. Jezierska, T. Wosinski, J. cryst. Growth, Vol. 246, 21-24 (2002)
    [10]J. D. Beach, R. T. Collins, and J. A. Turner, J. Electrochemical Society, Vol. 150 No. 7, A899-A904 (2003)
    [11]Francisco Machuca, Zhi Liu, Yun Sun, P. Pianetta, W. E. Spicer, R. F. W. Pease, J. Vac. Sci. Technol. A, Vol. 20, No. 5, 1784 (2002)
    [12]N. C. Greenham, I. D. W. Samuel, G. R. Hayes, R. T. Philips, Y. A. R. R. Kessener, S. C. Moratti, A. B. Holemes and R. H. Friend, Chem. Phys. Lett., Vol. 241, 89 (1995)
    [13]Chul Huh, Kug-Seung Lee, Eun-Jeong Kang, and Seong-Ju Park, J. Appl. Phys. Vol. 93, No. 11, 9383 (2003)
    [14]T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, Appl. Phys. Lett., Vol. 84, No. 6, 855 (2004)
    [15]Thomas F. Krauss, Richard M. De La Rue, Progress in Quantum Electronics, Vol. 23, 51-96 (1999)
    [16]Bhat JC, Kim A, Collins D, et al., INST PHYS CONF SER (170), 243-248 (2002)
    [17]Tetsuo Tsutsui and Kounosuke Yamamato, Jap. J. App. Phys., Vol. 38, 2799-2803 (1999)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE