研究生: |
謝怡賢 HSIEH, YI-HSIEN |
---|---|
論文名稱: |
探討一位國小三年級教師發展數學推理規範及學生數學證明表現之歷程 Exploring a third grade teacher to develop the process of mathematics reasoning norms and the performance of students' mathematical proof |
指導教授: |
蔡文煥
TSAI, WEN-HUAN 陳正忠 CHEN, JENG-CHUNG |
口試委員: |
林碧珍
蔡寶桂 |
學位類別: |
碩士 Master |
系所名稱: |
竹師教育學院 - 數理教育研究所 Graduate Institute of Mathematics and Science Education |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 97 |
中文關鍵詞: | 數學推理規範 、數學證明 |
外文關鍵詞: | Mathematical reasoning norms, Mathematical proof |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究意在探討一位三年級教師發展數學推理規範及學生數學證明表現的歷程。研究聚焦於一位多年參與數學課室討論之教師,其在三年級上、下學期共五個單元中,建立數學推理規範的情形;以及班上三年級學生在課堂中數學證明的發展為何。
研究者以Stylianides(2007)所提出的證明三元素為判斷學生基礎論證之證明的標準,並分析教師在不同單元中,使用不同證明任務以發展學生證明之情形,本研究之結果根據以下三方面進行說明:
教師在數學課室中建立數學推理規範,對於發展學生證明的影響為正面的,本研究發現數學推理規範的建立可以促進學生的證明思考。
在單一案例證明任務中,學生的證明表現產生三種類型的論證模式。類型一為基礎論證不合乎證明,經教師介入後論證也不合乎證明;類型二為基礎論證不合乎證明,經教師介入,經教師介入後論證合乎證明;類型三為學生之基礎論證合乎證明,經教師介入後,證明提升到更進階的證明。而教師對於這三種類型的學生之基礎論證,進行不同教學介入,以補足或提升學生的論證,成為合乎證明的進階論證。
在無限案例證明任務在三年級課程中較少出現,在僅有的案例中,分析學生的證明表現為類型一的論證模式,學生以操作性證明的方式進行證明,不合乎證明。
綜上所述,本研究發現教師建立數學推理規範能促進學生證明的發展,並且學生的論證表現是否能達到證明,與教師的教學介入有關。
This study is intended to explore a third-grade teacher to develop the process of mathematical reasoning norms and the performance of students' mathematical proof. The study focuses on the teaching of mathematics in a third-grade teacher and her students.
The researcher used the definition of proof proposed by Stylianides (2007) to judge student's basic argument is qualified to as proof or not, then analyzed the teacher use different proof tasks to develop student proofs in different units. The results of this study are described as followings:
Teachers establish mathematical reasoning norms in mathematics classrooms and impact on the development of students’ proof.
In a single case of task, there are three types of proving activities. In type 1, the basic argument did not qualify as proof and ensuing arguments were not qualified as proof. In type 2, the basic argument did not qualify as proof, but the ensuing argument were qualified as proof. In type 3, the basic argument was qualified as proof and ensuing argument as a more advanced proof. The basic arguments of three types after the instructional intervention could facilitate the development of a proof or the development of a more advanced proof.
In infinite case of task, the proof missions appear less frequently in third grade courses. In the only one case, the analysis of the students' proof is expressed as the type 1 argumentation model. The student proves in the form of empirical proof, which were not qualified as proof and ensuing arguments were also not qualified as proof.
In summary, this research suggests that teachers establish mathematical reasoning norms can promote the development of students’ proof. And whether the students' argumentation performance can achieve the proof is related to the teacher's teaching intervention.
中文文獻
1.王文科、王智弘(2014)。教育研究法。台灣五南圖書出版股份有限公司。
2.王憲昌(2000)。我國文化傳統中的“數學證明”。中華科技史同好會會刊,1(3),24-27。
3.李家同(1990)。多念數學以增加推理能力。《清華雙週刊》科學教室專欄第96期。
4.李善良、單墫(2002)。我們為什要學習數學–兼及新世紀中小學數學課程目標。數學傳播,26(4),77-88。
5.李國偉(2010,116)。證明是一種說服的過程(Proof is a process of persuasion)。取自http://highscope.ch.ntu.edu.tw/wordpress/?p=14904。
6.林福來等(1995)。數學證明的瞭解(Ⅱ)。行政院國家科學研究委員會專題研究計劃期末報告。
7.曹亮吉(2000)。函數觀念的演變史。科學月刊,16(2)。
8.洪萬生(2004)。教改爭議聲中,證明所為何事?師大學報:科學教育類,49(1),1-13。
9.教育部(2003)。國民中小學九年一貫課程綱要數學學習領域。台北市:教育部,10。
10.柳桂銘(2015)。九年級學生面對幾何證明題之答題策略及評判標準(未發表碩士論文)。臺灣師範大學數學系,台北市。
11.張海潮(2007)。證明不等同理解。數學傳播。
12.馮汝琪、戴絹穎(2016)。暢所欲言學數學:課堂討論教學策略大公開。新北市:心理。
13.葉明達、柳賢(2005)。幾何論證判讀歷程之個案研究。NTTU EDUCATIONAL RESEARCH JOURNAL,16(2),43-92。
14.楊逸帆(2018)。國小數學教科書提供學生論證機會之比較分析(未發表碩士論文)。國立清華大學數理教育研究所,新竹市。
15.蔡文煥(2010)。協同教師發展其學童之數學推理能力。行政院國家科學委員會九十八年專題研究計畫成果報告。(編號:NSC 92-2511-S-134-001),P5。
16.維基百科(2018/6)。https://zh.wikipedia.org/wiki/数学归纳法。
17.蕭文強(2007)。數學證明。九章出版社。
18.謝怡真(2013)。高中大學生對數學證明的學習狀況之研究(未發表碩士論文)。國立屏東教育大學應用數學系,屏東。
19.鍾靜、張淑怡、陳幸玫、陸昱任、戴坤邦(2012)。國小數學教師專業標準之建構。科學教育學刊,20(3),217-239。
英文文獻
1. Balacheff, N. (1988). Aspects of proof in pupils’ practice of school mathematics. Mathematics, teachers and children, 216, 235.
2. Ball, D. L., & Bass, H. (2003). Making mathematics reasonable in school. A research companion to principles and standards for school mathematics, 27-44.
3. Bleiler-Baxter, S. K., & Pair, J. D. (2017). Engaging students in roles of proof. The Journal of Mathematical Behavior, 47, 16-34.
4. Cai, J., & Cirillo, M. (2014). What do we know about reasoning and proving? Opportunities and missing opportunities from curriculum analyses. International Journal of Educational Research, 64, 132-140.
5. Cañadas, M. C., Deulofeu, J., Figueiras, L., Reid, D., & Yevdokimov, O. (2007). The conjecturing process: Perspectives in theory and implications in practice. Journal of Teaching and Learning, 5(1).
6. De Villiers, M. (1999). The role and function of proof with Sketchpad. Rethinking proof with Sketchpad, 3-10.
7. De Villiers, M. (2012). An illustration of the explanatory and discovery functions of proof. Pythagoras, 33(3), 1-8.
8. Ellis, A. B. (2007). A taxonomy for categorizing generalizations: Generalizing actions and reflection generalizations. The Journal of the Learning Sciences, 16(2), 221-262.
9. Hanna, G., & De Villiers, M. (Eds.). (2012). Proof and proving in mathematics education: The 19th ICMI study (Vol. 15). Springer Science & Business Media.
10. Hill, H. C., Ball, D. L., & Schilling, S. G. (2008). Unpacking pedagogical content knowledge: Conceptualizing and measuring teachers' topic-specific knowledge of students. Journal for research in mathematics education, 372-400.
11. Knuth, E., Zaslavsky, O. & Ellis, A. (2017). The role and use of examples in learning to prove. The Journal of Mathematical Behavior.
12. Lee, K. (2016). Students’ proof schemes for mathematical proving and disproving of propositions. The Journal of Mathematical Behavior, 41, 26-44.
13. Lesseig, K. (2012). Mathematical knowledge for teaching proof. Oregon State University.
14. Lesseig, K. (2016). Conjecturing, Generalizing and Justifying: Building Theory around Teacher Knowledge of Proving. International Journal for Mathematics Teaching and Learning, 17(3), n3.
15. Lin, F. L., Yang, K. L., Lee, K. H., Tabach, M., & Stylianides, G. (2011). Principles of task design for conjecturing and proving. In Proof and proving in mathematics education (pp. 305-325). Springer, Dordrecht.
16. Lucast, E. K. (2003). Proof as method: A new case for proof in mathematics curricula. Unpublished masters thesis. Pittsburgh, PA, USA: Carnegie Mellon University.
17. McCrory, R., & Stylianides, A. J. (2014). Reasoning-and-proving in mathematics textbooks for prospective elementary teachers. International Journal of Educational Research, 64, 119-131.
18. National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: National Council of Teachers of Mathematics.
19. Sears, R., & Chávez, Ó. (2014). Opportunities to engage with proof: the nature of proof tasks in two geometry textbooks and its influence on enacted lessons. ZDM, 46(5), 767-780.
20. Stylianides, A. J., & Stylianides, G. J. (2006). Content knowledge for mathematics teaching: the case of reasoning and proving. In Proceedings 30th conference of the international group for the psychology of mathematics education (Vol. 5, pp. 201-208).
21. Stylianides, A. J. (2007). The notion of proof in the context of elementary school mathematics. Educational Studies in Mathematics, 65, 1-20.
22. Stylianides, A. J. (2007). Proof and proving in school mathematics. Journal for research in Mathematics Education, 289-321.
23. Stylianides, G. J., Stylianides, A. J., & Philippou, G. N. (2007). Preservice teachers’ knowledge of proof by mathematical induction. Journal of Mathematics Teacher Education, 10(3), 145-166.
24. Stylianides, A. J., & Ball, D. L. (2008). Understanding and describing mathematical knowledge for teaching: Knowledge about proof for engaging students in the activity of proving. Journal of mathematics teacher education, 11(4), 307-332.
25. Stylianides, G. J. (2008). An analytic framework of reasoning-and-proving. For the Learning of Mathematics, 28(1), 9-16.
26. Stylianides, G. J. (2008). Investigating the guidance offered to teachers in curriculum materials: The case of proof in mathematics. International Journal of Science and Mathematics Education, 6(1), 191-215.
27. Stylianides, G. J., & Stylianides, A. J. (2008). Proof in school mathematics: Insights from psychological research into students' ability for deductive reasoning. Mathematical Thinking and Learning, 10(2), 103-133.
28. Stylianides, G. J.(2009). Reasoning-and-proving in school mathematics textbooks. Mathematical thinking and learning, 11(4), 258-288.
29. Stylianides, A. J. (2016). Proving in the elementary mathematics classroom. Oxford University Press.
30. Stylianides, G. J., Sandefur, J., & Watson, A. (2016). Conditions for proving by mathematical induction to be explanatory. The Journal of Mathematical Behavior, 43, 20-34.
31. Stylianides, G. J., & Stylianides, A. J. (2017). Based interventions in the area of proof: the past, the present, and the future. Educational Studies in Mathematics, 96(2), 119-127.
32. Stylianou, D. A., Blanton, M. L., & Knuth, E. J. (Eds.). (2010). Teaching and learning proof across the grades: A K-16 perspective. Routledge.
33. Reid, D. A. (2002). Conjectures and refutations in grade 5 mathematics. Journal for research in mathematics education, 5-29.
34. Weber, K. (2002). Beyond proving and explaining: Proofs that justify the use of definitions and axiomatic structures and proofs that illustrate technique. For the learning of Mathematics, 22(3), 14-17.