研究生: |
沈柏晉 Shen, Po-Chin |
---|---|
論文名稱: |
有長程跳躍的玻色赫巴德模型 Bose-Hubbard Model with Long-Range Hopping |
指導教授: |
陳柏中
Chen, Pochung |
口試委員: |
米格爾
Cazalilla, Miguel A. 高英哲 Kao, Ying-Jer |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 43 |
中文關鍵詞: | 玻色-赫巴德模型 、量子蒙地卡羅 、密度矩陣重整化群 |
外文關鍵詞: | Bose-Hubbard model, quantum Monte Carlo, density matrix renormalization group |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在此篇論文,我們主要研究⻑程有序在具有⻑程跳躍的一維的玻色-赫巴德模型 (Bose-Hubbard model)。我們使用量子蒙地卡羅(Quantum Monte Carlo) 來模擬系統,測量其關聯 (correlation) 和繞數 (winding number) 並用來計算凝聚係數 (condensate fraction) 和超流體密度 (superfluid density);此外,我們也利用密度矩陣重整化群(Density Matrix Renormalization Group) 來模擬系統,計算出零溫底下基態的糾纏熵 (entanglement entropy) 並用以推算出系統的中心電荷 (central charge)。
We study long-range orders in one-dimensional Bose-Hubbard model with power-law long-range hoppings. We measure the correlation and the winding numbers of hardcore bosons in one-dimension ring using quantum Monte Carlo simulations to calculate the condensate fraction and the superfluid density. On the other hand, we calculate the Entanglement entropy of open boundary zero-temperature ground states via density matrix renormalization group to estimate the central charge of the system.
[1] N.V Prokof’ev, B.V Svistunov, and I.S Tupitsyn. “worm”algorithm in quantum monte carlo simulations. Physics Letters A, 238(4):253 – 257, 1998.
[2] G.G. Batrouni and R.T. Scalettar. World line simulations of the bosonic hubbard model in the ground state. Computer Physics Communications, 97(1):63 – 81, 1996. High-Performance Computing in Science.
[3] Ulrich Schollwöck. The density-matrix renormalization group in the age of matrix product states. Annals of Physics, 326:96–192, January 2011.
[4] Román Orús. A practical introduction to tensor networks: Matrix product states and projected entangled pair states. Annals of Physics, 349:117–158, October 2014.
[5] E. L. Pollock and D. M. Ceperley. Path-integral computation of superfluid densities. Phys. Rev. B, 36:8343–8352, Dec 1987.
[6] Kenji Harada. Bayesian inference in the scaling analysis of critical phenomena. Phys. Rev. E, 84:056704, Nov 2011.
[7] Kenji Harada. Kernel method for corrections to scaling. Phys. Rev. E, 92:012106, Jul 2015.
[8] B. Pirvu, V. Murg, J. I. Cirac, and F. Verstraete. Matrix product operator representations. New Journal of Physics, 12(2):025012, February 2010.
[9] J. C. Xavier. Entanglement entropy, conformal invariance, and the critical behavior of the anisotropic spin-s heisenberg chains: Dmrg study. Phys. Rev. B, 81:224404, Jun 2010.
[10] Hyejin Ju, Ann B. Kallin, Paul Fendley, Matthew B. Hastings, and Roger G. Melko. Entanglement scaling in two-dimensional gapless systems. Phys. Rev. B, 85:165121, Apr 2012.
[11] Jonathan D’Emidio, Matthew S. Block, and Ribhu K. Kaul. Rényi entanglement entropy of critical SU(n) spin chains. Phys. Rev. B, 92:054411, Aug 2015.