研究生: |
牙璽喬 Ya,Hsi Chiao |
---|---|
論文名稱: |
結合數位影像相關法與光場相機新型量測系統之研發 RESEARCH AND DEVELOPMENT OF THE NOVEL MEASUREMENT SYSTEM BY INTEGRATING DIGITAL IMAGE CORRELATION METHOD AND LIGHT FIELD CAMERA |
指導教授: |
王偉中
Wang, Wei-Chung |
口試委員: |
張禎元
Chang, Jen Yuan 羅鵬飛 Luo, Peng Fei |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 141 |
中文關鍵詞: | 數位影像相關法 、光場相機 、光場成像理論 、矽膠 |
外文關鍵詞: | Digital image correlation (DIC) method, Light field Ccmera, Light field rendering, PDMS |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究特別製作螢光粉矽膠透明試片 (以下簡稱螢光粉試片),以嘗試突破目前DIC法系統僅限於量測不透明物體表面形貌的限制。本研究結合數位影像相關(Digital Image Correlation, DIC)法系統與現今流行的光場相機(Light Field Camera)建立一創新的光學量測系統首次挑戰模擬體積數位影像相關(Volume Digital Image Correlation, VDIC)法的機制,以量測試片內部的變形。而為了驗證本研究所建立之創新量測系統的可行性,亦進行了使用傳統斑點試片做相同的實驗以做比對。
本研究總共進行四個實驗,其中三個實驗係使用螢光粉試片探討DIC法的使用極限,依序為2D-DIC法剛體平移實驗(使用鋁板試片與螢光粉試片)、2D-DIC法四點彎矩實驗(使用白色斑點試片與螢光粉試片)、3D-DIC法面外位移實驗(使用白色斑點試片與螢光粉試片)。第四個實驗為應用創新的光學量測系統於階梯試片位移的量測,主要是利用光場相機重新對焦的特色,藉以展現光場相機在量測上的優勢,並利用傳統DIC法系統去探討與驗證創新光學量測系統的可行性。
研究結果上,螢光粉試片在2D-DIC法的量測因為理論值與實驗值誤差很小,因此可驗證量測結果佳,但在3D-DIC法上的量測因為斑點遮蔽效應嚴重而無法分析。階梯試片位移實驗中,在聚焦面的量測因為影像的解析度更佳,斑點匹配時的誤差降低,所得到的DIC結果更為準確。雖然本研究限於現有光場相機的規格及操作技術的純熟度,所獲得之研究成果尚不盡理想,但是根據國外最新光場相機的技術報導,結合光場相機與DIC法的光學量測系統應具有相當的應用潛力。
This research integrated the digital image correlation (DIC) method system with the currently popular light field camera to establish a novel optical measurement (NOM) system. To attempt to break through the current DIC technique with limitation on measuring surface topography of opaque bodies, this research manufactured transparent specimens made of PDMS mixed with phosphor powder (hereinafter called phosphor powder specimen). To investigate the feasibility of measuring the internal deformation by using the established NOM system, this research attempted to simulate the volumetric digital Image correlation (VDIC) method. To compare the experimental results obtained by the NOM system with the traditional DIC method system, same experiment was performed on the transparent specimens with spray coating.
Four types of experiments were performed in this research. To the phosphor powder specimens, three experiments were implemented to study the limit of the DIC method, including rigid body translation experiment by the 2D-DIC method (for the aluminum plate and phosphor powder specimens), four-point-bending experiment by the 2D-DIC method (for the white PDMS specimen covered with random black speckle pattern and phosphor powder specimen) and out-of-plane displacement experiment by the 3D-DIC method (for the white PDMS specimen covered with random black speckle pattern and phosphor powder specimen).
The fourth experiment was performed by using the NOM system to the displacement measurement of a step-shaped specimen. The characteristic of this experiment is to demonstrate the refocus feature and the measurement superiority of the light field camera. Traditional DIC method was also used to compare and verify the NOM system.
Regarding the phosphor powder specimens, in contrast to the small difference between the theoretical and experimental results obtained by the 2D-DIC method, displacement measurement was unable to carry out by the 3D-DIC method due to the shielding effect of speckles.
On the displacement measurement experiment of the step-shaped specimen by the 2D-DIC method, better image resolution on the focal plane was achieved and lower matching error in the speckle matching process was obtained. Therefore, accurate results were obtained. Because of the specification limit and insufficient operational experience of the light field camera, the results obtained by using the NOM system in this research are not satisfactory. However, based on the latest report of the technology development of the light field camera, the NOM system has full potential to become a useful system.
[1] W. H. Peters and W. F. Ranson, “Digital Imaging Techniques in Experimental Stress Analysis,” Optical Engineering, Vol. 21, No. 3, pp. 427-431, 1982.
[2] M. A. Sutton, W. J. Wolters, W. H. Peters, W. F. Ranson and S. R. McNeill, “Determination of Displacements Using an Improved Digital Image Correlation Method,” Image and Vision Computing, Vol. 1, No. 3, pp. 133-139, 1983.
[3] A. Calderón, “Intermediate spaces and interpolation,” Studia Mathematica, Vol. 24, No. 2, pp 31–34, 1963.
[4] T. C. Chu, W. F. Ranson, M. A. Sutton and W. H. Peters, “Applications of Digital-Image-Correlation Techniques to Experimental Mechanics,” Experimental Mechanics, Vol. 25, No. 3, pp. 232-244, 1985.
[5] M. A. Sutton, M. Cheng, W. H. Peters, Y. J. Chao and S. R. McNeill, “Application of an Optimized Digital Correlation Method to Planar Deformation Analysis,” Image and Vision Computing, Vol. 4, No. 3, pp. 143-150, 1986.
[6] M. A. Sutton, S. R. McNeil, J. Jang and M. Babai, “Effect of Subpixel Image Restoration on Digital Image Correlation Estimates,” Optical Engineering, Vol. 27, No. 10, pp. 870-877, 1988.
[7] H. A. Bruck, S. R. McNeill, M. A. Sutton and W. H. Peters, “Digital Image Correlation Using Newton-Raphson Method of Partial Differential Correlation,” Experimental Mechanics, Vol. 29, No. 3, pp. 261-267, 1989.
[8] Z. L. Kahn-Jetter and T. C. Chu, “Three-dimensional Displacement Measurements Using Digital Image Correlation and Photogrammic Analysis,” Experimental Mechanics, Vol. 30, No. 1, pp. 10-16, 1990.
[9] P. F. Luo, Y. J. Chao, M. A. Sutton and W. H. Peters III, “Accurate Measurement of Three-dimensional Deformations in Deformable and Rigid Bodies Using Computer Vision,” Experimental Mechanics, Vol. 33, No. 2, pp. 123-132, 1993.
[10] H. Lu and P. D. Cary, “Deformation Measurements by Digital Image Correlation: Implementation of a Second-Order Displacement Gradient,” Experimental Mechanics, Vol. 40, No. 4, pp. 393-400, 2000.
[11] B. Pan, H. M. Xie, B. Q. Xu and F. L. Dai, “Performance of Sub-Pixel Registration Algorithms in Digital Image Correlation,” Measurement Science and Technology, Vol. 17, No. 6, pp. 1615-1621, 2006.
[12] L. Felipe-Sesé, P. Siegmann, F. A. Díaz and E. A. Patterson, “Simultaneous In-and-Out-of-Plane Displacement Measurements Using Fringe Projection and Digital Image Correlation, ” Optics and Lasers in Engineering,Vol. 52, No. 1, pp. 66-74, 2014.
[13] A. Gershun, “The Light Field,” Journal of Mathematics and Physics, Vol 18, pp. 51-151, 1939.
[14] E. H. Adelson and J. R. Bergen, “The Plenoptic Function and the Elements of Early Vision,” Computational Models of Visual Processing, MIT Press, Cambridge, MA, U.S.A., pp. 3-20, 1991.
[15] E. H. Adelson and Y. A. Wang, “Single Lens Stereo With a Plenoptic Camera,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 14, No. 2, pp. 99-106, 1992.
[16] M. Levoy and P. Hanrahan, “Light Field Rendering,” Proceedings of ACM SIGGRAPH '96, New Orleans, LA, pp. 31-42, 1996.
[17] B. Wilburn1, N. Joshi, V. Vaish, Eino-Ville Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz and M. Levoy, “High Performance Imaging Using Large Camera Arrays,” ACM Transactions on Graphics, Vol. 24, No. 3, pp. 765-776, 2005.
[18] R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz and P. Hanrahan, “Light Field Photography with a Hand-Held Plenoptic Camera,” Stanford Tech Report CTSR, No. 2, 2005.
[19] R. Ng and P. Hanrahan, “Digital Correction of Lens Aberrations in Light Field Photography,” Proceedings of SPIE, Vol. 6342, pp. 63421E(1-14), 2007.
[20] M. Levoy, Z. Zhang and I. Mcdowall, “Recording and Controlling the 4D Light Field in a Microscope Using Microlens Arrays,” Journal of Microscopy, Vol. 235, No. 2, pp. 144-162, 2009.
[21] 張廷宇, 應用影像相關法探討人工網膜與動物筋膜之變形與機械性質, 國立清華大學動力機械工程學系碩士論文, 2008.
[22] 陳柏甫, 三維數位影像相關法之新校正程序, 國立清華大學動力機械工程學系碩士論文, 2010.
[23] 陳家禾, 數位影像相關法位移誤差與像差關係之探討, 國立清華大學動力機械工程學系碩士論文, 2013.
[24] W. H. Peters, W. F. Ranson, T. C. Chu and J. Anderson, “Application of Digital Correlation Methods to Rigid Body Mechanics,” Optical Engineering, Vol. 22, No .6, pp. 738-742, 1983.
[25] M. A. Sutton, J. J. Orteu and H. W. Schreier, “Image Correlation for Shape, Motion and Deformation Measurements,” Springer, New York, USA, 2009.
[26] 潘家弘, “利用傅立葉切片理論之數位變焦計算與硬體加速設計”, 國立臺灣大學電機資訊學院電子工程學研究所碩士論文, 2011.
[27] 周志良, “光學成像技術研究”, 中國科學技術大學博士論文, 合肥, 中國大陸, 2012.
[28] R. Ng, “Fourier Slice Photography,” ACM Transactions on Graphics, Vol. 24, No. 3, pp. 735-744, 2005.
[29] 聶云峰, 相里斌, 周志良, “光學成像技術進展”, 中國科學院研究生院學報, Vol. 28, No. 5, pp. 563-572, 2011.
[30] 楊凡, 袁艷, 周志良, “光場相機成像質量評價方法研究”, 現代電子技術, Vol. 34, No. 6, pp. 4-6, 2011.
[31] H. W. Schreier, "Volumetric Image Correlation for Deformation
Measurements," (Plenary Talks) 5th International Symposium on
Experimental Mechanics & 9th Symposium on Optics in Industry,
Guanajuato, Mexico, August 17-21, 2015.
[32] Website:http://www.schneiderkreuznach.com/index_e.htm
[33] Website:http://www.alliedvisiontec.com/
[34] Website:http://www.correlatedsolutions.com.
[35] Website:http://www.surevision.com.tw/product.htm
[36] Website:http://www.onset.com.tw/
[37] Website: https://www.mitutoyo.com.tw/
[38] Website: http://www.fairmont-tw.com/
[39] Website: http://www.hviglobal.com/
[40] Website:http://www.raytrix.de/index.php/Cameras.html
[41] Website: https://www.lytro.com/illum/in-action/