簡易檢索 / 詳目顯示

研究生: 趙嘉烺
Zhao, Jia-Lang
論文名稱: 多成分高分子混合以促進鋰離子傳導之研究
Multicomponent Polymer Blends for Enhanced Lithium-Ion Conduction
指導教授: 楊長謀
Yang, Arnold C. M.
口試委員: 鄭智嘉
Cheng, Chi-Chia
官振豐
Kuan, Zhen-Feng
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 109
中文關鍵詞: 高熵高分子相分離離子傳導水吸收結晶
外文關鍵詞: high-entropy polymer, phase separation, ion conduction, water absorption, crystallization
相關次數: 點閱:40下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們嘗試利用五種彼此有截然不同主鏈結構和玻璃轉換溫度、但具有高極性端官能基的高分子(PEO、PVDF-HFP、PCL、PEC、CA),利用旋轉塗佈法製成高熵高分子薄膜,探討高熵特性影響其分子相分離、離子傳導行為、與吸水性。我們發現單成份高分子能進行結晶 (PVDF-HFP: 38%、PEO: 70%、PCL: 32%、CA: 30%),但結晶行為會因分子混合而受到抑制,整體結晶度隨高分子成分數(n)增加而降低,當n =5時降至16%,並只出現PE0、PCL特徵結晶峰。當添加20 wt.% LiClO4時,鋰鹽結晶峰並未出現,而隨n增加,高分子結晶明顯下降,離子導電度上升。添加40 wt.% LiClO4時,鋰鹽結晶峰出現,但高分子結晶度、反而因離子吸附、破壞分子間作用的規律性、而被抑制。在過量的LiClO4添加下(40 wt.% ),部分鋰鹽析出結晶,但未析出之鋰鹽仍能提升離子導電度約一個數量級,至10-8-10-6S/cm。此時,隨n增加,鋰鹽結晶明顯下降,歸因於高熵混合效應使鋰鹽有效分散,且在n=5時,離子導電度仍遠高於成分高分子的平均期望值,顯示高熵分子分散效應,仍有效提升離子導電行為。此系統高分子皆具有環境吸水特性,吸水後導電度快速增加約5個數量級至5x10-4 S/cm (at 20wt.% 鋰鹽)。推論吸附的水分子,改變離子傳導機制,建立了能讓離子進行連續跳躍,以類似電泳方式遷移的快速通道。


    We attempted to use five polymers with distinct main chain structures and glass transition temperatures, but all possessing high polarity end functional groups (PEO, PVDF-HFP, PCL, PEC, CA), to create high-entropy polymer films through the spin coating method. This approach aimed to explore how high-entropy characteristics affect molecular phase separation, ion conduction behavior, and water absorption. We found that single-component polymers could crystallize (PVDF-HFP: 38%, PEO: 70%, PCL: 32%, CA: 30%), but crystallization was suppressed due to molecular mixing, with overall crystallinity decreasing as the number of polymer components (n) increased, dropping to 16% when n=5, and only characteristic crystalline peaks of PEO and PCL appeared. When 20 wt.% LiClO4 was added, no lithium salt crystalline peaks were observed, and polymer crystallinity significantly decreased with increasing n, while ion conductivity increased. Upon adding 40 wt.% LiClO4, lithium salt crystalline peaks appeared, but polymer crystallinity was suppressed due to the ion adsorption disrupting the regularity of molecular interactions. With an excess of LiClO4 (40 wt.%), some lithium salts precipitated as crystals, but the unprecipitated lithium salts still enhanced the ion conductivity by approximately an order of magnitude, to 10-8-10-6 S/cm. As n increased, lithium salt crystallinity significantly decreased, attributed to the high-entropy mixing effect facilitating efficient dispersion of lithium salts, and at n=5, the ion conductivity remained significantly higher than the average expected value of the component polymers, indicating the effective enhancement of ion conducting behavior by the high-entropy molecular dispersion effect. All polymers in this system exhibited hygroscopic properties, and upon water absorption, conductivity rapidly increased by about five orders of magnitude to 5x10-4 S/cm (at 20wt.% lithium salt). It is inferred that the absorbed water molecules alter the ion conduction mechanism, establishing fast channels that allow ions to hop continuously, moving in a manner similar to electrophoresis.

    目錄 摘要 I Abstract III 致謝 V 目錄 VII 圖目錄 X 第一章 簡介 1 第二章 文獻回顧 3 2-1 高熵高分子 3 2-1-1高熵高分子介紹 3 2-2 鋰離子固態電解質 5 2-1-1 鋰離子固態電解質 5 2-1-2 鋰離子傳導機制 7 2-3 橡膠態高分子(RUBBERY STATE POLYMERS) 8 2-3-1 聚乙二醇烷 (PEO) 8 2-3-2 聚偏二氟乙烯-六氟丙烯(PVDF-HFP) 9 2-3-3 聚己內酯(PCL) 10 2-3-4 聚(碳酸亞乙酯)(PEC) 11 2-4 玻璃態高分子(GLASSY STATE POLYMERS) 12 2-4-1 醋酸纖維素 (CA) 12 2-5 電化學阻抗分析圖譜原理 13 2.5.1奈奎斯特阻抗圖譜(Nyquist plot) 14 2.5.2 等效電路圖 15 第三章 實驗方法 16 3-1 實驗材料 17 3-1-1高分子材料 17 3-1-2 有機溶劑 18 3-1-3 實驗基材 18 3-2 樣品製備 19 3-2-1固態電解質膜 19 3-2-2 CR2032鈕扣電池組裝 20 3-3 量測方法 22 3-3-1 電化學阻抗量測實驗 22 3-3-2 薄膜結晶度 22 3-4 實驗儀器介紹 23 3-4-1 光學顯微鏡 (Optical microscopy, OM) 23 3-4-2 原子力顯微鏡 (Atomic force microscopy, AFM) 25 3-4-3 電化學交流阻抗分析儀(Electrochemical Impedance Spectroscopy, EIS) 27 3-4-4 X光粉末繞射儀(XRPD) 28 3-4-5 薄膜厚度輪廓測量儀(α-Step) 29 3-4-6 掃描電子顯微鏡SEM 31 第四章 結果與討論 32 4-1 高熵固態電解質薄膜表面形貌變化 32 4-1-1 光學顯微鏡影像 32 4-1-2 AFM原子力顯微鏡影像分析 38 4-1-3 SEM掃描電子顯微鏡影像分析 40 4-2高熵固態電解質結晶行為 47 4-2-1 無鋰鹽環境下的結晶度 48 4-2-2 鋰鹽環境下的結晶度 51 4-3有效離子濃度 53 4-3-1 有效離子分量計算 53 4-4高熵固態電解質離子導電性 57 4-4-1 20wt% LiClO4 1元高分子導電性 57 4-4-2 20wt% LiClO4 n=2-5 離子導電性 58 4-4-3 40wt% LiClO4 n=1 離子導電性 65 4-4-4 40wt% LiClO4 n=2-5 離子導電性 67 4-4-6 單成份比例改變對高熵環境的導電度影響 71 4-4-7 離子導電性與結晶性的關係 79 4-5吸水性固態電解質離子導電度的影響 82 4-5-1吸水性對導電度的影響 82 第五章 結論 89 第六章 參考文獻 92 附錄 95

    1. Y. J. Huang, J. W. Yeh, A. C.-M. Yang. Materialia. March 2021, Volume 15, 100978.
    2. K. Murata, S. Izuchi, Y. Yoshihisa. Electrochimica Acta. 2000, 45, 1501–1508.
    3. L.Yue, J.Ma, J.Zhang, J. Zhao, S, Dong, Z. Liu, G, Cui, L. Chen. Energy. Storage. Materials. 2016, 5, 136-194.
    4. K. M. Diederichsen, H. G. Buss, B. D. McCloskey. Macromolecules. 2017, 50, 3831−3840.
    5. N. A. Stolwijk, M. Wiencierz, C. Heddier, and J. Kösters. J. Phys. Chem. B. 2012, 116, 3065−3074.

    6. M. A. Ratner. D. F. Shriver. Chem. Rev. 1988, 88, 109-124

    7. M. A. Ratner, P. Johansson, D. F. Shriver. MRS. BULLETIN, MARCH, 2000.
    8. X. Wei and D. F. Shriver. Chem. Mater. 1998, 10, 2307-2308.
    9. D. Bresser, S. Lyonnard, C. Iojoiu, L. Picarde, S. Passerini. Mol. Syst. Des. Eng. 2019, 4, 779
    10. M. Armand Solid State tonics 1983, 9 & 10, 745-754.
    11. G. Zhou, F. Li, H. M. Cheng. Energy Environ. Sci, 2014, 7, 1307–1338
    12. Y.An, X.Han, Y. Liu, A. Azhar, J. Na, A. K. Nanjundan, S. Wang, J. Yu, Y. Yamauchi. Small 2022, 18, 2103617.
    13. H. Yang, N.Wu. Energy Sci Eng. 2022, 10, 1643–1671.
    14. Y. Cao, T. G. Morrissey, E. Acome, S. I. Allec, B. M. Wong, C. Keplinger, C. Wang. Adv. Mater. 2017, 1605099
    15. B. Halder, M. G. Mohamed, S. W. Kuo, P. Elumalai. Materials Today Chemistry. 2024, 36, 101926.
    16. C. P. Fonseca, S. Neves. Journal of Power Sources. 2006.159. 712–716.
    17. B.M, B. Walter, H. Stockmayer. Macromolecules. 1994, 27, 7429—7432 7429
    18. Y. Tominaga. Polymer Journal. 2017, 49, 291–299
    19. S. Monisha, S. Selvasekarapandian, T. Mathavan, A. M. F. B, S. Manoharan, S. Karthikeyan. J. Mater. Sci. Mater. Electron. 2016. 27. 9314–9324.
    20. E. Salz, J. P. Hummel, P. J. Flory, M. Plavsic. J. Phys. Chem. 1981, 85, 3211-3215.
    21. P. Marx, F. Wiesbrock. Polymers 2021, 13, 806.
    22. H. S. Magar, R. Y. A. Hassan, A. Mulchandani. Sensors. 2021, 21, 6578.
    23. Multimode SPM instruction manual ver. 4.31, Digital Instruments, Veeco Metrology Group.
    24. 林鶴南, 李龍正, 劉克迅, 原子力顯微鏡及其在半導體研究上的應用,科儀新知 17, 13 (1996)
    25. 汪建民主編, 材料分析,中國材料科學學會 (1998)

    26. Y. Zhao, Y. Bai, Y. Bai, M. Ana, G. Chen, W. Lid, C. Lia, Y. Zhou, Journal of Power Sources. 2018, 407, 23.
    27. C. A. Angell, C. Liu, E. Sanchez. Mat. Res. Soc. Symp. Proc. 1993, Vol 293.
    28. S. Cheng, D. M. Smith, and C. Y. Li. Macromolecules. 2014, 47, 3978−3986.
    29. A. A. Rojas, S. Inceoglu, N. G. Mackay, J. L. Thelen, D. Devaux, G. M. Stone, N.P. Balsara. Macromolecules. 2015, 48, 6589−659.
    30. F. Chen, X. Wang , M. Armand, M. Forsyth. Nature Materials. VOL 21, October 2022, 1175–1182.
    31. Y. Li, F. Ding, Z. Xu, L. Sang, L. Ren, W. Ni, X. Liu. Journal of Power Sources 2018, 397, 95–101.
    32. A. Johansson, A. Lauenstein, J. Tegenfeldt. J. Phys. Chem. Vol. 99, No. 16, 1995
    33. Z. Zhang, M. Ohl, S. O. Diallo, N. H. Jalarvo, K. Hong, Y. Han, G. S. Smith, C. Do, PRL, 2015 115, 198301.
    34. N. H. A. Nasir, C. H. Chan, H. W. Kammer, L. H. Sim, M. Z. A. Yahya. Macromol. Symp. 2010, 290, 46–55.
    35. J. Xie, Z. Liang, Y. C. Lu. Nature Materials. VOL, 19. September, 2020. 1006–1011.

    QR CODE