簡易檢索 / 詳目顯示

研究生: 蔡宗閔
Chung-Min Tsai
論文名稱: 催化劑電漿前處理對奈米碳管於連線應用之研究
Plasma Pretreatment of Catalysts for Carbon Nanotube Interconnect
指導教授: 游萃蓉
Tri-Rung Yew
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 70
中文關鍵詞: 電漿奈米碳管催化劑奈米連線連線窗孔鎢磷化鈷
外文關鍵詞: Plasma, Carbon Nanotube, Catalyst, Interconnect, Via, CoWP
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗利用電子迴旋共振系統(Electron Cyclotron Resonance System, ECR system)所產生之高密度電漿,於碳管成長前,對碳管成長之催化劑-鎢磷化鈷(CoWP)薄膜-施以各種氣體電漿前處理,並探討對碳管生長的影響。本研究證實純氫氣(H2)電漿前處理對碳管生長之密度及長度有所增進,可應用於半導體之連線(Interconnect)部分。
    在電子迴旋共振系統當中,使用氬氣、氦氣、氫氣,或其混合氣體所產生之高密度電漿,對鎢磷化鈷(CoWP)薄膜施以電漿前處理,其後以熱裂解或電子迴旋共振電漿輔助化學氣相沉積法( Chemical Vapor Deposition),於小於400 ℃的低溫狀態下,通入乙炔(C2H2)/氫氣(H2)或甲烷(CH4)/氫氣(H2),進行奈米碳管之合成。結果顯示,經過純氫氣電漿前處理之鎢磷化鈷薄膜基板,具有均勻且細緻的奈米島狀尖錐,配合氫氣電漿對催化劑金屬的還原效應,藉此,我們可獲得生長密度更高(DCNT~1011 tubes/cm2)且長度更長(LCNT~400 nm)的奈米碳管。除此之外,更進一步成功地將奈米碳管成長於以鎢磷化鈷為擴散阻障層的銅雙層鑲嵌(Cu/low-k Dual-Damascene)之上下金屬連接窗孔結構中(窗孔大小 = 100 nm)。


    In this work, the use of hydrogen plasma-pretreatment to enhance carbon nanotube (CNT) growth is reported for interconnect application. The cobalt tungsten phosphorous (CoWP) catalyst on copper substrate was subjected to the argon, helium and hydrogen plasma pretreatment in electron cyclotron resonance (ECR) system before the CNT growth by chemical vapor deposition from C2H2/H¬2 or CH4/H2 with or without ECR plasma enhancement CVD at 400 ℃. Results show that hydrogen plasma-pretreatment provides reduction effect on catalyst metal oxide, uniform and finer catalyst islands of CoWP substrate, resulting in denser (DCNT~1011 tubes/cm2) and longer (LCNT~400 nm) CNTs grown on the blanket CoWP and in the dual damascene via with CoWP in the via bottom.

    Abstract...................................................I 摘 要....................................................II 誌 謝...................................................III 目 錄....................................................IV 圖示說明.................................................VII 表格說明...................................................X 第一章 緒 論............................................11 第二章 文獻回顧...........................................13 2.1 奈米碳管於連線技術上的應用............................13 2.2 奈米碳管..............................................19 2.3 奈米碳管的合成技術....................................21 2.4 奈米碳管的生長機制....................................22 A. 直徑和奈米催化顆粒相關性...............................22 B. VLS成長機制(Vapor–Liquid–Solid Growth Mechanism).....23 C. SLS成長機制(Solid–liquid–solid growth mechanism).....24 2.5 奈米碳管的電性........................................25 第三章 實驗步驟與儀器簡介.................................27 3.1 實驗流程及簡介........................................27 A. 基座的清洗與氫氟酸浸泡.................................31 B. 電子迴旋共振系統之電漿前處理...........................32 C. 奈米碳管合成...........................................35 D. 奈米碳管成長形態鑑定...................................38 E. 催化劑表面形貌與成份鑑定...............................38 F. 微結構分析.............................................39 3.2 儀器簡介..............................................40 電子迴旋共振系統 (Electron Cyclotron Resonance System)....40 第四章 結果與討論.........................................41 4.1 電漿處理製程參數對Ni催化劑薄膜表面之影響..............41 A. 電漿功率—微波及射頻 (MW and RF Power).................41 B. 電漿氣體源.............................................44 4.2 電漿處理製程參數對CoWP催化劑薄膜表面之影響............46 A. 電漿處理時間...........................................46 B. 射頻功率...............................................46 C. 二階段電漿處理.........................................51 4.3 電漿處理對於碳管生長形態的影響........................53 A. 不同氣體源之電漿前處理.................................53 B. 催化劑島狀尖錐密度(Dis)................................57 C. 島狀尖錐平均高度(Have).................................59 D. 均方根粗糙度(Rq).......................................60 4.4 氫氣電漿的還原效應....................................63 4.5 奈米碳管微結構鑑定....................................66 第五章 結 論.............................................67 參考文獻..................................................68

    [1] International Interconnect Technology Conference, IITC 2004, sponsored by IEEE, San Francisco, June 6-9 (2004)
    [2] M. Nihei, M. Horibe, A. Kawabata, and Y. Awano, Simulation Formation of Multiwall Carbon Nanotubes and their End-Bonded Ohmic Contacts to Ti Electrodes for Future ULSI Interconnects, Japanese Journal of Applied Physics, Vol. 43, No. 4B, pp.1856-1859 (2004)
    [3] M. Nihei, M. Horibe, A. Kawabata, and Y. Awano, Carbon Nanotube for Future LSI Interconnects, IITC 2004, pp.251-253 (2004)
    [4] M. Nihei, M. Horibe, A. Kawabata, and Y. Awano, Japanese Journal of Applied Physics, 64, pp.6499-6502 (2004)
    [5] F. Kreupl, A.P. Graham, G.S. Duesberg, W. Steinhol, M. Liebau, E. Unger, and W. Honlein, Carbon Nanotubes in Interconnect Applications, Microelectronic Engineering, 64, pp.399-408 (2002)
    [6] G. S. Duesberg, A. P. Graham, F. Kreupl, M. Ilea, R. Seidel, E. Unger, W. Honlein, Ways towards the Scaleable Integration of Carbon Nanotubes into Silicon Based Technology, Diamond and Related Materials, 13, pp.354-361 (2004)
    [7] S. Iijima, Nature 354, 56 (1991)
    [8] Yao, Z.; Kane, C. L.; Dekker, C. Phys. Rev. Lett. 84, 2491 (2000)
    [9] Hone, J.; Whitney, M.; Zettle, A. Synthetic Metals 103, 2489 (1999)
    [10] Vinciguerra, V.; Buonocore, F.; Panzera, G.; Occhipinti, L. Nanotechnology 14, 655-660 (2003)
    [11] Frank, S.; Poncharal, P.; Wang, Z. L.; de Heer, W. A. Science 280, 1744-1746 (1998)
    [12] Wei, B. Q.; Vajtai, R.; Ajayan, P. M. Appl. Phys. Lett. 79, 1172-1174 (2001)
    [13] Kim, P.; Shi, L.; Majumdar, A.; McEuen, P. L. Phys. Rev. Lett. 87, 215502-1-4 (2001)
    [14] S. Hofmann, M. Cantoro, B. Kleinsorge, C. Casiraghi, A. Parvez, and J. Robertson, Journal of Applied Physics, 98, 034308 (2005)
    [15] Y. Y. Wei, Gyula Eres, V. I. Merkulov, and D. H. Lowndes, Applied Physics Letters, Vol. 78, 1394 (2001)
    [16] Yiming Li, Woong Kim, Yuegang Zhang, Marco Roland, Dunwei Wang, and Hongjie Dai, J. Phys. Chem., 105, 11424 (2001)
    [17] L. Zhu, Y. Sun, D. W. Hess, and C.P. Wong, Nano Letters, 6, p243 (2006)
    [18] McEuen, P. L., Fuhrer, M., Park, H. IEEE T. Nanotechnol., 1, 78 (2002)
    [ 9] M. Nihei, D. Kondo, A. Kawabata, S. Sato, M. Sakaue, T. Iwai, M. Ohfuti,and Y. Awano, Low-resistance Multi-walled Carbon Nanotube Vias with Parallel Channel Conduction of Inner Shell, IITC 2005, pp.234-236 (2005)
    [20] M. Nihei, A. Kawabata, D. Kondo, M. Horibe, S. Sato, and Y. Awano, Electrical Properties of Carbon Nanotube Bundles for Future Via Interconnects, Japanese Journal of Applied Physics, Vol. 44, No. 4A, pp. 1626-1628 (2005)
    [21] G. S. Duesberg, A. P. Graham, Growth of Isolated Carbon Nanotubes with Lithographically Defined Diameter and Location, Nono Letters, Vol. 3, No. 2, pp. 257-259 (2003)
    [22] G. S. Duesberg, A. P. Graham, F. Kreupl, M. Ilea, R. Seidel, E. Unger, Diamond and Related Materials 13, 354-361 (2004)
    [23] T. C. Tseng, “ Electroless CoWP as a Catalyst of Self-Aligned CNTs for Future CMOS Interconnect Applications ”, MRS conference, April (2006)
    [24] S. Iijima and T. Ichihashi, Nature 363, 603 (1993)
    [25] M. S. Dresselhaus, G. Dresselhaus, P. Avouris (Eds.),” Carbon nanotubes: Synthesis, structure, Properties, and Application”, Springer, Berlin (2002)
    [26] T. Guo et al, Chem. Phys. Lett. 49, 243. (1995).
    [27] M. Meyyappan et al, Plasma Sources Sci. Technol. 12, 205 (2003)
    [28] J.Gavillet, A. Loiseau, C. Journet, F. Willaime, F. Ducastelle, and J.-C. Charlier, Phy. Rev. Lett., 87, 275504 (2001)
    [29] A.Gorbunov , O. Josta, W. Pompea, A. Graffb, Carbon, 40, 113 (2002)
    [30] P. R. Wallace, Phys. Rev., 71, 622 (1947)
    [31] S. Frank, P. Poncharal, Z. L. Wang, W. A. de Heer, Science, 280, 1744 (1998)
    [32] H. J. Li, W. G. Lu, J. J. Li, X. D. Bai, C. Z. Gu, Phys. Rev. Lett. 95, 086601 (2005)
    [33] A. Kohn, Applied Surface Science, 212-213, 367 (2003)
    [34] M. Kohler, Etching in Microsystem Technology (1999)
    [35] T. C. Tseng, and T. R. Yew, submitted to Nano Lett. on July 1 (2006)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE