簡易檢索 / 詳目顯示

研究生: 卓冠秀
Cho, Kuan-Hsiu
論文名稱: 利用奈米碳管為載體製備應用於質子交換膜燃料電池陰極端之鉑鎳二元觸媒
Preparation of PtNi Binary Catalyst Supported on Carbon Nanotubes Applied for the Cathode of Proton Exchange Membrane Fuel Cells
指導教授: 葉宗洸
Yeh, Tsung-Kuang
口試委員: 陳燦耀
Chen, Tsan-Yao
薛康琳
Hsueh, Kan-Lin
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 112
中文關鍵詞: 燃料電池陰極觸媒化學沉積
外文關鍵詞: PEMFC, catalyst, chemical reduction
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究嘗試利用不同白金製程於奈米碳管上製備PtNi二元觸媒並應用於質子交換膜燃料電池中之陰極氧氣端。奈米碳管藉由化學氣相沉積法直接成長於碳布上以增加電極表面積,試片以循環伏安法進行親水處理後,先以脈衝式電鍍法電鍍鎳金屬,接著嘗試三種白金製程沉積白金觸媒於鎳金屬外層,三種製程分為四個實驗: (A)於酸性環境中電鍍(B)於鹼性環境中電鍍與(C)(D)化學沉積法;同時選擇電化學效能最好之白金製程參數製備純白金單元觸媒作為對照組。
    測試方面,利用循環伏安法於0.1 M過氯酸溶液中進行循環伏安法與線性掃描伏安法電化學測試,並利用掃描式電子顯微鏡(SEM)、與電感耦合等離子體質譜(ICP-MS)進行觸媒形貌及金屬組成定量分析。經由SEM觀測發現利用化學沉積法製備之PtNi觸媒分布最均勻;在半電池電化學測試中,由循環伏安法(CV)及線性掃描伏安法(LSV)之極限電流密度結果顯示三種白金製程製備之鉑鎳觸媒的電化學總活性表面積相當,但利用化學沉積法製備之PtNi觸媒的起始電位高於利用電鍍法製備之二元觸媒,顯示其觸媒反應之活化能較低,因此在較高電位時氧還原反應開始產生。在全電池測試分析,將實驗D中自製PtNi觸媒應用於陰極端,開路電位為0.94 V且最大功率密度可達849.56 mW/cm2,本研究同時製備不含鎳金屬之鉑單元觸媒與噴塗相同白金承載量之商用觸媒做為對照組,由全電池測試結果發現單元觸媒MEA之開路電位約0.89V,最高功率密度為497.76 mW/cm2,而商用MEA之開路電位約0.89V,最高功率密度為557.61 mW/cm2,由極化曲線圖顯示直接沉積觸媒於奈米碳管之製程可以有效降低歐姆極化損失,鎳金屬的存在有助於提升白金觸媒之催化效果。


    In this study, Pt-Ni binary alloy catalysts supported on carbon nanotubes (PtNi/CNTs) were developed to enhance efficiency of oxygen reduction reaction (ORR) for proton exchange membrane fuel cell (PEMFC) application. The CNTs were directly grown on carbon cloths by chemical vapor deposition method and then treated with hydrophilic process. The nickel nanoparticles were deposited on CNTs by pulse electro-planting. Then we attempted three different procedures with four parts, which were: (A) Electro-planting in acid solution, (B) Electro-planting in base solution and (C)(D) Chemical deposition method to deposite Pt particles on the surface of Ni metals. After confirming electrochemical efficiency of PtNi catalysts, the Pt/CNTs specimen was also prepared by the same depositon procedure for comparison.
    Electrochemical characteristics of the PtNi/CNTs catalyst were investigated via cyclic
    voltammetry analysis and rotating disk electrode test in 0.1 M perchloric acid. Structure
    and elementary composition were measured by SEM and ICP-MS analysis. The onset potential of PtNi prepared by chemical deposition procedure (PtNi-C) was higher than others, which indicated that it had lowest activation loss for reduction reaction of oxygen. The single cell tests results shown that the open circuit voltage of PtNi MEA was about 1 V, and the power density of which could reach 849 mW/cm2, which was 70 % and 52 %higher than pure-Pt MEA and commercial MEA. The results indicated that PtNi catalyst had better catalytic activity than pure Pt, and the procedure of directly deposited catalysts on electrode could had better electronic conduction compared with commercial Pt/C MEA.

    摘要....i Abstract....ii 總目錄....iii 圖目錄....vi 表目錄....xi 緒論....1 1.1 前言 1 1.2 研究動機 2 第二章 基本原理與文獻回顧 5 2.1 燃料電池簡介 5 2.2 質子交換膜燃料電池結構 6 2.2.1 氣體擴散層 7 2.2.2 觸媒層 11 2.2.3 觸媒載體 11 2.2.4 質子交換膜 14 2.2.5 雙極板 16 2.3 質子交換膜燃料電池工作原理 17 2.4 全電池極化損失 19 2.4.1 活性極化 20 2.4.2歐姆極化 21 2.4.3 濃度極化 22 2.4.4 燃料穿透 22 2.5 電化學分析 22 2.5.1 循環伏安法(Cyclic Voltammetry) 22 2.5.2 極化曲線(Linear Sweep Voltammetry) 24 2.5.3 旋轉盤電極(Rotating Disc Electrode, RDE) 25 2.6 陰極氧氣還原反應 27 2.6.1 氧氣還原反應機制 27 2.6.2 氧氣還原反應觸媒 30 第三章 實驗方法 32 3.1 實驗流程 32 3.2 實驗藥品與設備 33 3.2.1 實驗藥品 33 3.2.2 實驗用氣體 34 3.2.3 實驗設備 34 3.2.4 分析用儀器 35 3.3 觸媒載體之製備 36 3.4 奈米碳管親水化處理 37 3.5 觸媒製備 38 3.5.1 鎳金屬電鍍 38 3.5.2 鉑金屬沉積 40 3.6 觸媒電化學特性分析 44 3.6.1 循環伏安法測試(CV) 44 3.6.2 線性掃描伏安法測試(LSV) 46 3.7 觸媒分析 47 3.7.1 場發射掃瞄式電子顯微鏡(Field Emission Gun Scanning Electron Microscopy,FEG-SEM) 47 3.7.2 穿透式電子顯微鏡(Transmission Electron Microscopy,TEM) 48 3.7.3 X光粉末繞射(X-ray Powder Diffraction,XPRD) 49 3.7.4 感應耦合電漿質譜分析儀(Inductively Coupled Plasma-Mass Spectrometer,ICP-MS) 50 3.8 單電池測試 (Single Cell Test) 51 3.8.1膜電極組(Membrane Electrode Assembly,MEA)製備 51 3.8.2 漿料配製與噴塗 52 3.8.3 MEA 組裝 53 3.8.4 單電池極化掃描測試 54 第四章 結果與討論 56 4.1 奈米碳管載體 56 4.1.1 奈米碳管形貌 56 4.1.2 奈米碳管親水化處理 57 4.2 鎳金屬之電鍍 58 4.2.1 場發射掃描式電子顯微鏡之觸媒形貌分析(SEM) 58 4.3 實驗A - 酸性溶液中電鍍白金觸媒 61 4.3.1 場發射掃描式電子顯微鏡之觸媒形貌分析(SEM) 61 4.3.2 半電池電化學分析結果 62 4.3.3 感應耦合電漿質譜分析儀分析(ICP-MS) 64 4.3.4 單電池測試分析結果 64 4.4 實驗B - 鹼性溶液中電鍍白金觸媒 66 4.4.1 場發射掃描式電子顯微鏡之觸媒形貌分析(SEM) 66 4.4.2 半電池電化學分析結果 68 4.4.3 感應耦合電漿質譜分析儀分析(ICP-MS) 72 4.4.4 單電池測試分析結果 72 4.5 實驗C - 化學沉積法製備白金觸媒 74 4.5.1 場發射掃描式電子顯微鏡之觸媒形貌分析(SEM) 74 4.5.2 半電池電化學分析結果 77 4.5.3 X光粉末繞設法分析(XRD) 85 4.5.4 感應耦合電漿質譜分析儀分析(ICP-MS) 86 4.5.5 單電池測試分析結果 87 4.6 實驗D - 化學沉積法製備白金觸媒 89 4.6.1 場發射掃描式電子顯微鏡之觸媒形貌分析(SEM) 89 4.6.2 半電池電化學分析結果 92 4.6.3 X光粉末繞設法分析(XRD) 99 4.6.4 感應耦合電漿質譜分析儀分析(ICP-MS) 100 4.6.5 單電池測試分析結果 101 第五章 結論 105 參考文獻 107

    [1] Prabhu, Rahul R. Stationary Fuel Cells Market size to reach 350,000 Shipments by 2022. Renew India Campaign. 13 January 2013 [2013-01-14].
    [2] W.R.Grove, ”On voltaic series and the combination of gases by platinum”, Phil. Mag., vol. 14, pp. 127-130, 1839
    [3] B. Wickman, “Nanostructured Model Electrodes for Studies of Fuel Cell Reactions”, Chalmers University of Technology, 2010
    [4] J. Larminie, A. Dicks, Fuel cell systems explained 2nd, edited by J. Wiley, Chichester West Sussex, 2003
    [5] 李依文,「應用於質子交換膜燃料電池陰極端之奈米碳管支撐鉑鎳二元觸媒對於氧氣還原之效能研究」,清華大學工程與系統科學系,碩士論文,中華民國一O四年
    [6] Andreas Pfrang, Damien Veyret, Georgios Tsotridis,”Convection and Conduction Heat Transfer”, edited by Dr. Amimul Ahsan, Netherlands, 2011
    [7] Afsin Y. Cetinkaya, Oguz Kaan Ozdemir, Emre Oguz Koroglu, Aydin Hasimoglu,Bestami Ozkaya, “The development of catalytic performance by coating Pt–Ni on CMI7000 membrane as a cathode of a microbial fuel cell”, 2015
    [8] Zhong Wang, Zhenhua Yan, Min Wang, Jinsheng Zhao, ”Glycerol Stabilized NaBH4 Reduction for Preparation Carbon Supported Pt-Ni Alloy Nanoparticles Used as Oxygen-Reduction Electrocatalysts for Microbial Fuel Cells”, 2015
    [9] M. Uchida, Y. Aoyama, M. Tanabe, N. Yanagihara, N. Eda, and A. Ohta, "Influences of Both Carbon Supports and Heat-Treatment of Supported Catalyst on Electrochemical Oxidation of Methanol," Journal of the Electrochemical Society, vol. 142, pp. 2572-2576, Aug 1995.
    [10] E. Antolini, ''Carbon supports for low-temperature fuel cell catalysts'', Applied Catalysis B: Environmental, vol. 88, pp. 1–24, 2009
    [11] Yougui Chen, Jiajun Wang, Xiangbo Meng, Yu Zhong, Ruying Li, Xueliang Sun, Siyu Ye, Shanna Knights, "Pt-SnO2/nitrogen-doped CNT hybrid catalysts for proton-exchange membrane fuel cells (PEMFC): Effects of crystalline and amorphous SnO2 by atomic layer deposition", Journal of Power Sources, vol. 238, pp. 144-149, 2013
    [12] Y. Chen, J. Wang, H. Liu, R. Li, X. Sun, S. Ye, S. Knights, "Enhanced stability of Pt electrocatalysts by nitrogen doping in CNTs for PEM fuel cells", Electrochemistry Communications, vol. 11, pp. 2071-2076, 2009
    [13] Xin Wang, Wenzhen Li, Zhongwei Chen, Mahesh Waje, Yushan Yan, “Durability investigation of carbon nanotube as catalyst support for proton exchange membrane fuel cell”, Journal of Power Sources vol. 158, pp. 154-159, 2006
    [14] Jing Liu, Chun-Tao Liu, Lei Zhao, Jing-Jia Zhang, Li-Mei Zhang, Zhen-Bo Wang, “Effect of different structures of carbon supports for cathode catalyst on performance of direct methanol fuel cell”, international journal of hydrog enenergy, vol. 41, pp. 1859-1870, 2016
    [15] Ming-Chi Tsai, Tsung-Kuang Yeh, Chuen-Horng Tsai, "An improved electrodeposition technique for preparing platinum and platinum–ruthenium nanoparticles on carbon nanotubes directly grown on carbon cloth for methanol oxidation", Electrochemistry Communication, vol.8, pp.1445-1452, 2006
    [16] H.G. Haubold, Th. Vad, H. Jungbluth, P. Hiller, “Nano structure of NAFION: a SAXS study”, Electrochimica Acta Volume 46, Issues 10–11, 15 March 2001, Pages 1559–1563
    [17] M. S. Wilson, J. A. Valerio, and S. Gottesfeld, "Low Platinum Loading Electrodes for Polymer Electrolyte Fuel-Cells Fabricated Using Thermoplastic Ionomers," Electrochimica Acta, vol. 40, pp. 355-363, Feb 1995
    [18] Allen Hermanna, Tapas Chaudhuria, Priscila Spagnolb, “Bipolar plates for PEM fuel cells: A review”, International Journal of Hydrogen Energy vol. 30, pp. 1297 – 1302, 2005
    [19] T. R. Ralph and M. P. Hogarth, "Catalysis for Low Temperature Fuel Cells," Platinum Metals Review, vol. 46, pp. 117-135, Jul 2002.
    [20] Jitendra N. Tiwari, Rajanish N. Tiwari, Gyan Singh, Kwang S. Kim, "Recent progress in the development of anode and cathode catalysts for direct methanol fuel cells", Nano Energy, vol. 2, pp.553–578, 2013
    [21] M. Naraghi, Carbon Nanotubes - Growth and Applications, InTech, 2011
    [22] J. Larminie and A. Dicks, Fuel cell systems explained, 2nd ed. Chichester, West Sussex: J. Wiley, 2003
    [23] Wang J., Analytical Electrochemistry, 2nd Edition, New York, 2000.
    [24] 郭豔如,「可拋棄式奈米白金碳墨修飾電極電化學偵測之研究」, 國立交通大學應用化學系, 碩士論文, 2009
    [25] Department of Chemical Engineering and Biotechnology, University of Cambridge, http://www.ceb.cam.ac.uk/research/groups/rg-eme/teaching-notes/linear-sweep-and-cyclic-voltametry-the-principles
    [26] 胡啟章, 「電化學原理與方法」, 五南圖書出版公司, 2002.
    [27] Kim Kinoshita, “Electrochemical Oxygen Technology, Interscience”, New York, 1992
    [28] H. S. Wroblowa, Y. C. Pan, and G. Razumney, "Electroreduction of Oxygen–New Mechanistic Criterion," Journal of Electroanalytical Chemistry, vol. 69, pp. 195-201, 1976.
    [29] A. H. C.H. Hamann, W. Vielstich, "Electrochemistry, ed. 1st.," Wiley-VCH, Weinheim, 1998.
    [30] N. M. Markovic and P. N. Ross, “Electrocatalysis at Well-Defined Surface”, in “Interfacial Electrochemistry”, A Wieckowski(Ed), Marcrel Dekker, New York, pp. 821-841, 1999
    [31] S. Mukerjee, S. Srinivasan, M. P. Soriaga and J. MeBreen, J. Elecreochem. Soc, 143(5), 1409(195)
    [32] J. P. Hoare, in “Advances Electrochemistry and Electrochemical Engineering”, Vol. 6, P. Delahay, Editor, pp.201, Interscience Publishers, Inc., New York, 1967
    [33] A. S. M.R. Tarasevich, and E. Yeager, "Comprehensive Treatise of Electrochemistry," Springer US, 1983.
    [34] E. Yeager, "Dioxygen Electrocatalysis - Mechanisms in Relation to Catalyst Structure, "Journal of Molecular Catalysis, vol. 38, pp. 5-25, Nov, 1986.
    [35] K.V. RAMBSH, P.R. SARODE, S. VASUDEVAN and A.K. SHUKLA, “PREPARATION AND CHARACTERIZATION OF CARBON-BASED FUELCELL ELECTRODES WITH PLATINUM-GROUP BIMETALLIC CATALYSTS”, J. Electroanal. Chem., vol. 223, pp. 91-106, 1987
    [36] McBreen Sanjeev Mukerjee, Supramaniam Srinivasan, Manuel P. Soriaga and James, “ Situ XANES and EXAFS Investigation Alloys on Electrocatalysis of Oxygen Reduction : An In Role of Structural and Electronic Properties of Pt and Pt”, J. Electrochem. Soc. 1995, Volume 142, Issue 5, Pages 1409-1422.
    [37] Takako Toda, Hiroshi Igarashi, Hiroyuki Uchida, Masahiro Watanabe, “Enhancement of the Electroreduction of Oxygen on Pt Alloys with Fe, Ni, and Co”, Journal of The Electrochemical Society, 146 (10), pp. 3750-3756, 1999
    [38] M. R. Tarasevich, A. E. Chalykh, V. A. Bogdanovskaya, L. N. Kuznetsova, N. A. Kapustina, B. N. Efremov, et al., "Kinetics and mechanism of oxygen reduction reaction at CoPd system synthesized on XC72," Electrochimica Acta, vol. 51, pp. 4455-4462, Jun 1 2006.
    [39] Baosheng Li, Siew Hwa Chana, “PtFeNi tri-metallic alloy nanoparticles as lectrocatalyst for oxygen reduction reaction in proton exchange membrane fuel cells with ultra-low Pt loading”, international journal of hydrogen energy, vol. 38, pp. 3338-3345, 2013
    [40] S. Hrapovic, M.-F. Manuel, J.H.T. Luong, S.R. Guiot, B. Tartakovsky, “Electrodeposition of nickel particles on a gas diffusion cathode for hydrogen production in a microbial electrolysis cell”, international journal of hydrogenenergy, vol. 35, pp. 7313-7320, 2010
    [41] B. J. Hwang, L. S. Sarma, C. H. Chen, C. Bock, F. J. Lai, S. H. Chang, et al., "Controlled Synthesis and Characterization of Ru-core-Pt-shell Bimetallic Nanoparticles," Journal of Physical Chemistry C, vol. 112, pp. 19922-19929, Dec 18 2008
    [42] 莊宸綱,「利用邁衝式電鍍法製備高燃料氧化效能及抗一氧化碳毒化之新穎奈米結構鉑觸媒」,清大工程與系統科學系,碩士論文,中華民國一○三年
    [43] J. Y. Sun, J. S. Huang, Y. X. Cao, and X. G. Zhang, "Hydrothermal synthesis of Pt-Ru/MWCNTs and its electrocatalytic properties for oxidation of methanol," International Journal of Electrochemical Science, vol. 2, pp. 64-71, Jan 2007
    [44] Geochemical Instrumentation and Analysis, http://serc.carleton.edu/research_education/geochemsheets/BraggsLaw.html
    [45] 李珠,「感應耦合電漿質譜儀技術及其在材料分析上的應用」,工業材料雜誌 181 期,2002
    [46] H. I. Lee, C. H. Lee, T. Y. Oh, S. G. Choi, I. W. Park, and K. K. Baek, "Development of 1 kW class polymer electrolyte membrane fuel cell power generation system," Journal of Power Sources, vol. 107, pp. 110-119, Apr 20 2002
    [47] Florida Solar Energy Center, Procedure for Performing PEM Single Cell Testing, 2009.

    QR CODE