簡易檢索 / 詳目顯示

研究生: 陳德祥
Chen, Te-Hsiang
論文名稱: 藉由error-prone PCR改良endo-1, 4-β-xylanase之抗熱性
Improvement of thermostability of endo-1, 4-β-xylanase by error-prone PCR
指導教授: 黎耀基
Lai, Yie-Kay
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物科技研究所
Biotechnology
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 41
中文關鍵詞: 木聚醣水解脢抗熱性
外文關鍵詞: endo-1, 4-β-xylanase, thermostability
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 木聚醣水解酵素目前被廣泛地應用在領域中,包括了食品工業、畜牧業、造紙以及紙漿工業等等,並且仍被認為尚有許多應用的潛力。而在其眾多不同的類型中,尤其以endo-1, 4-β-xylanase最為被廣泛應用也最被看好其潛力。於之前的研究中我們從製漿漂前黑液(58℃,pH 9.83)中分離出耐高溫高鹼的Paenibacillus sp. (Isolate BL11)。該菌株擁有分泌endo-1, 4-β-xylanase的能力,此酵素被命名為xylanase X。在最佳反應條件下(60℃、pH 7)xylanase X具有2392 IU/mg的酵素活性。本實驗的目的為利用error-prone PCR建立xylanase X的library,並且篩選出擁有更強抗溫能力的突變株,以符合工業應用的條件。最終我們分別得到了木聚醣分解能力上升的胺基酸取代株pXcm-H1(T44A)及後段缺失株pXcm-L1(胺基酸序列270-290因base deletion而由TSTHSFSLRGASNNANMARVD轉變為 LALIVSHCGGRRTMPTWPGWT)。pXcm-H1在67.5℃至70℃擁有原本xylanase的兩倍活性;而pXcm-L1在67.5℃至70℃擁有原本xylanase的三倍以上活性。且還篩選到了和pXcm-H1突變在同一胺基酸卻導致抗溫能力下降的pXcm-M2(T44M)。由此我們推論:第44號胺基酸Thr在xylanase X中可能是影響其抗高溫能力的關鍵胺基酸。


    Xylolytic hydrolases are generally applied in many kinds of fields, including food industry, animal husbandry, paper and pulp industry and are considered still very potential for application. In industry endo-1, 4-β-xylanase is mostly applied enzyme among the xylolytic hydrolases, and its potential is desirously expected. In our last research, we have isolated a thermo-alkaline Paenibacillus sp. (Isolate BL11) from black liquor (58℃, pH 9.83). The bacterium can secret an endo-1, 4-β-xylanase, named xylanase X. At optimal reaction condition (60℃ pH 7), xylanase X demonstrates an enzyme activity of 2392 IU/mg. The research goal of this experiment is to create a mutagenesis library of xyl X using error-prone PCR and isolate mutants of improved thermostability by screening the library for industry application. At the end of this experiment we have got two activity-improved mutants, an amino acid substitution mutatant pXcm-H1(T44A) and a downstream deletion mutant pXcm-L1(amino acid sequence 270-290 from TSTHSFSLRGASNNANMARVD changed to LALIVSHCGGRRTMPTWPGWT by a nucleotide deletion). Between 67.5℃ and 70℃ pXcm-H1 showed twice activity then xylanase X whereas pXcm-L1 had triple activity. Besides, we have got a thermostability-decreased mutatant pXcm-M2(T44M). The mutant carries a different amino acid substitution at the site of pXcm-H1, but its thermostability decreased distinctly. According to this result, we suggest that the Thr-44 is a critical amino acid affecting the thermostability of xylanase X.

    目錄 前言 1 材料與方法 材料 一、 菌株 6 二、 化學藥品與酵素 6 三、 載體質粒 6 四、 引子 6 五、 菌種 6 方法 一、 大腸桿菌之培養 7 二、 載體質粒的大量製備 7 三、 勝任細胞之製備 7 四、 Library of Endo-1,4-β-xylanase之製備 8 五、 Library of Endo-1,4-β-xylanase之抗溫株的篩選 9 六、 Endo-1,4-β-xylanase粗酵素的製備 9 七、 DNSA(dinitrosalicylic acid) 醣解酵素活性測定法 10 八、 SDS-PAGE和zymography 10 九、 DNA定序 11 十、 多醣水解能力專一性檢測 11 結果 一、 利用引子序列的設計得到signal peptide去除的Xylanase R 12 二、 Library of Mutated Xylanase X的建立 14 三、 Thermostable mutated xylanase的篩選 15 四、 篩選所得strain的DNSA assay和SDS-PAGE 15 五、 篩選所得突變株的DNA定序 21 六、 檢測各個mutant對於各種多醣的分解能力 26 討論 一、 Xylanase activity喪失突變株:pXcm-L2和pXcm-M1 28 二、 同一位置胺基酸取代但造成不同結果的突變株: pXcm-H1和pXcm-M1 29 三、 抗溫能力上升後段缺失株:pXcm-L1 31 四、 結論與展望 31 文獻 33 附圖 一、 Xylanase X from Paenibacillus sp. Isolate BL11的 DNA和protein sequence 37二、 pXcm-kn12的gene map 38 附錄 一、 培養基及緩衝溶液配方 39 二、 Normal PCR和Error-prone PCR 配方以及 程式設定時間 40 三、 SDS-PAGE和zymography膠體及溶液配方 41 插圖索引 圖一、各種分解xylan的hydrolase 2 圖二、Xylanase X的signal peptide 分析 12 圖三、Xylanase X和Xylanase R的N端蛋白質序列比對 13 圖四、Xylanase R的signal peptide分析 14 圖五、篩選所用的replica和assay plate 15 圖六、Mutate strains 的SDS-PAGE和zymography 16 圖七、pXcm-L1和pUC19-xylanase R的活性比較圖 17 圖八、pXcm-H1、pXcm-M2和pUC-19-xylanase R的活性比較圖 18 圖九、pXcm-L2、pXcm-M1和pUC19-Xylanase R的活性比較圖 19 圖十、pUC19-xylanase R和pBC-KS-xylanase X的活性比較圖 20 圖十一、Xylanase R、H1、L1、L2、M1和M2 DNA sequence 的比對 21 圖十二、Xylanase R、H1、L1、L2、M1和M2 protein sequence 的比對 24 圖十三、H1、L1、L2、M1以及M2對五種多醣xylan、lichnan、 CMC、pectin和starch的水解能力檢測 26 圖十四、nucleophile glutamic acid 與acid/base transverse glutamic acid 共同進行水解反應機制圖 28 圖十五、利用Swiss-model模擬Xylanase R之結構 30 圖十六、L1和Xylanase R結構比較圖 31 表格索引 表一、Xylanase R、Xylanase X和所選出突變株在57.5-70℃的 Xylanase活性 16 表二、Xylanase R、Xylanase X和所選出突變株在各溫度下的 活性百分比 20

    Alasdair M. Macleod, T. Dedreia, R. Karen, J. W. R. Antony and G. W. Steohen (1996). "Mechanistic Consequence of Mutation of active site carboxylates in a Retaining beta-1,4-glycanase from Cellulomonas fimi." Biochemistry 35: 13165-13172.

    Bajpai P. (1999). "Application of enzymes in the pulp and paper industry." Biotechnology Progress 15: 147-157.

    Bedfold M. R. and H. L. Classen (1992). "The influence of dietary xylanase on intestinal viscosity and molecular weight distribution of carbohydrate in rye-fed brolier chick." In : VisserJ, Beldman G, vanSomeren MAK, Voragen AGJ(eds) Xylans and xylanases . Elsever, Amsterdam: 361-370.

    Beg O. K., B. Bhushan, M. Kapoor and G. S. Hoondal (2000). "Enhanced production of a thermostable xylaanse from Sterptomyces sp. QG-11-3 and application in biobleaching of eucalyptus kraft pulp." Enzyme and Microbial Technology 27.

    Beg O. K., M. Kapoor, L. Mahajan and G. S. Hoondal (2001). "Microbial xylanases and their industrial applications : a review." Applied Microbiology and Biotechnology 56: 326-338.

    Biely P. (1985). "Microbial xylanolytic system." Trends in Biotechnology 3: 286-301.

    Clarke J. H., J. E. Rixon, H. J. Gilbert and G. P. Hazelwood (1997). "Family-10 and Family-11 xylanases differ in their capacity to enhance the bleachability of Hardwood and softwood papar pulps " Appied Microbiology Biotechnology 48: 177-183.

    Clarke J. H., K. Davidson, J. E. Rixon, J. R. Halstesd, M. P. Fransen, H. J. Gilbert and G. P. Hazlewood (2000). "A comparison of enzymes aided bleaching of softwood pulp using a combination of xylanase, mannanase and alpha-galactosidase." Applied Microbiology and Biotechnology 53: 661-667.

    Cleemput G., M. Hessing, M. von Oort, M. Deconynck and J. Delcour (1997). "Purification and characterization of β-D-xylosidase and endo-xylanase from wheat flour." Plant Physiology 113: 377-386.

    Dervilly G., C. Leclecrq, D. Zimmerman, J. F. T. C. Riue and L. Saulnier (2002). "Isolation and characterization of high molecular mass water-soluble arabinoxylans from barley malt." Carbohydrate Polymers 47: 143-149.

    Dervilly G., J. F. Thibault and L. Saulnier (2001). "Experimintal evidence for a semi-flexible conformation for arabinoxylans." Carbohydrate Research 330: 365-372.

    Esteban R., I. R. Villaneuva and T. G. Villa (1982). "β-D-xylanase of Bacillus circulans WL-12." Canadian Jouranl of Microbiology 28: 733-741.

    Gabriel Paes and Michael J. O'Donohue (2006). "Engineering increased thermostability in the thermostable GH-11 xylanase from Thermobacillus xylanilyticus." Jounal of Biotechnology 125: 338-350.

    Gilbert H.J., G.P. Hazelwood, J.I. Laurie, C.G. Oipin and G.P. Xue (1992). "Homologous catalytic domains in a rumen fungal xylanase: evidence for gene duplication and prokaryotic origin." Molecular Microbiology 6: 2065-2072.

    Grabski A. C. and T. W. Jeffries (1991). "Production, purification and characterization of β-1,4-Endoxylanase of Streptomyces roseiscleroticus " Appied and Enviromental Mricrobiology 57: 987-991.

    Hajime Shibuya, Satosi Kaneko and Kiyoshi Hayashi (2005). "A single amino acid Substitution enhances the catalytis activity og family 11 xylanase at Alkaline pH." Bioscience Biotechnology Biochemistry 69: 1492-1497.

    Jian Zhao, L. Xuezhi and Q. Yinbo (2006). "Application of enzymes in producing bleached pulp from wheat straw." Bioresource Technology 97: 1470-1476.

    Joseleau JP, J. Comtat and K. Ruel (1992). "Chemical structure of xylans and their interaction in the plant cell walls." In : VisserJ, Beldman G, vanSomeren MAK, Voragen AGJ(eds) Xylans and xylanases . Elsever, Amsterdam: 1-15.

    Kentaro Miyazaki, T. Misa, K. Hidemasa, N. Natsuko, S. Mamoru and T. Sakae (2006). "Thermal stabilization of Bacillus subtilis family-11 xylanase by directed evolution." Jounal of Biological Chemistry 281: 10236-10242.

    Khasin A., I. Alchanati and Y. Shoham (1993). "Purification and characterization of a thermostable xylanase from Bacillus stearothermophilus T-6." Appied and Enviromental Mricrobiology 59: 1725-1730.

    Kuhad I. and A. Singn (1993). "Lignocelluloseic biotechnology : current and future prospects." Crit Rev Biotechnology 13: 151-172.

    Kulkami N., A. Shendye and M. Rao (1999). "Molecular and biotechnological aspects of xylanases." FEMS Microbiology Reviews 23: 411-456.

    Ling Yuan, k. Itzhak, E. James and K. Robert (2005). "Laboratry -Directed Protein evolution." Microbiology and Molecular Biology reviews 69: 373-392.

    Mursheda K. Ali, B. R. Frederick and N. B. George (2004). "Thermostable xylanase10B from Clostridium acetpbutylicum ATCC824." Jounal of Industrial Microbiological Biotechnology 31: 229-234.

    Niehaus F., C. Bertoldo., M. Kahler. and G. Antranikian (1999). "Extremopliles as a source of novel enzymes for industrial applications." Appied Microbiology Biotechnology 51: 711-729.

    Nielsen H., J. Engelbrecht, S. Brunak and G. von Heijne (1997). "Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites." Protein Eng. 10: 1-6.

    Nisha Palackal, S. Christopher, Z. Seema, L. Peter, P. Dupree, G. Florence, L. M. John, M. S. Jay, P. H. Geoffery and E. R. Dan (2006). "A multifunctional hybrid glycosyl hydrolase discovered in an uncultured microbial consortium from ruminant gut." Appied Microbiology Biotechnology 74: 113-124.

    Puls J. (1997). "Chemistry and biochemistry of hemicellulose : relationship between hemicellulose structure and enzymes required for hydrolysis." Marcomolecular Symposia 120: 183-196.

    Ratto M., K. Poutanen and l. Viikari (1992). "Production of xylanolytic enzymes by an alkalitolerant Bacilus circulans strain " Applied Microbiology and Biotechnology 37: 470-475.

    Shigeaki Harayama (1998). "Artifical evolution by DNA shuffling." Trends Biotechnology 16: 76-82.

    Subramaniyan S. and P. Prema (2001). "Control of xylanase production with ut protease activity in Bacillus sp. by th e selected nitrogen source." Biotechnology Letters 23: 369-371.

    Tomoko Sakata, T. Jun, M. Hiroyuki, O. Yuko, W. Rieko, T. Hidenori, Y. Rie, F. Toshiaki and N. Satoshi (2006). "Improvement of binding activity of xylan-binding domain by amino acid substitution." Nucleic Acids Symposium 50: 253-254.

    Vanparidon P. A., J. C. P. B., G. C. M. Selten, C. Geerse, D.Barug, P. H. M. deBot, and G. Hemke, (1992). "Application of fungal endoxylanase in poultry diets " In : VisserJ, Beldman G, vanSomeren MAK, Voragen AGJ(eds) Xylans and xylanases . Elsever, Amsterdam: 371-378.

    Whistler R.L. and E.L. Richards (1970). "Hemicelluloses." In: Pigman W,Hortin D(eds) The carbohydrates. Academic Press, New York,: 447-469.

    Wong K.K.Y. and J. N. Saddler (1992). "Trichoderma xylanases , their properties and purification." Crit Rev Biotechnology 12: 413-435.

    Wong K.K.Y., L. U. l. T., and J. N. Saddler., (1988). "Multiplicity of beta-1 ,4-xylanase in microorganism : Function and applications." Microbiology Reviews 52: 305-327.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE