簡易檢索 / 詳目顯示

研究生: 辜元泰
Ku, Yuan-Tai
論文名稱: 奈米碳管共振器之分析模擬與研製
Analysis, Simulation and Fabrication of Carbon Nanotube Resonator
指導教授: 柳克強
Leou, Keh-Chyang
曾繁根
Tseng, Fan-Gang
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 80
中文關鍵詞: 奈米碳管共振器單壁懸掛
外文關鍵詞: Carbon Nanotube, Resonator, Single-walled, Suspended
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對懸掛式單壁奈米碳管共振器的機械與電性特性、單壁奈米碳管成長製程等重點依序加以分析與探討,透過理論分析與有限元素法軟體模擬,預測並計算奈米碳管之共振頻率,並實作出共振器元件,透過奈米碳管本身所具備的單電子傳輸與混波效應,利用鎖相放大電路量測其機械共振訊號。
    利用在溝槽結構上直接橫向成長單壁奈米碳管的機制,成長出長度為1 micron之單壁奈米碳管並使其懸掛在深度1.3 micron的溝槽結構上,並於奈米碳管的兩端佈置鈦金屬材料作為電極,接著在常溫常壓的環境條件下利用鎖相放大電路量測其共振訊號,得到此懸掛式奈米碳管共振器元件之機械共振頻率為78 MHz,同時施加閘極直流偏壓可觀察到共振頻率隨偏壓的增加而提高,在1.4 V的閘極偏壓下,共振頻率提高為89.4 MHz。


    The purpose of this thesis is to discuss physical and electrical properties of suspended carbon nanotube resonator. First, the resonant frequency of carbon nanotube will be predicted by plastic mechanics and finite element simulation. Then we will measure the resonant signal based on single electron transportation and mixing effect of single-walled carbon nanotube.
    We developed a suspended carbon nanotube resonator can be operated in room-temperature and pressure and observed the resonant frequency can be tuned by gate DC bias. Without gate DC bias, the resonant frequency of the device is 78 MHz. With 1.4 V gate DC bias, the resonant frequency of the device is 89.4 MHz.

    中文摘要………………………………………………………………Ⅰ 英文摘要………………………………………………………………Ⅱ 誌謝……………………………………………………………………Ⅲ 目錄……………………………………………………………………Ⅳ 圖目錄…………………………………………………………………Ⅶ 表目錄…………………………………………………………………XI 第一章 緒論 1 1.1研究背景 2 1.2研究動機 3 1.3研究目的 4 第二章 微/奈米機械共振器系統簡介 6 2.1 微機械共振器 6 2.1.1懸臂樑式共振器 6 2.1.2 圓盤式共振器 8 2.2 奈米機械共振器 8 2.2.1 垂直式奈米碳管共振器 8 2.2.2 懸掛式奈米碳管共振器 15 2.3 單壁奈米碳管之單電子傳輸效應 19 2.4單電子電晶體之混波效應 20 2.5 小結 22 第三章 奈米碳管的物理性質 23 3.1 前言 23 3.2 奈米碳管的機械性質 25 3.3 奈米碳管的電性特性 27 3.4 拉曼光譜(Raman Spectra) 32 第四章 共振模態模擬與計算 34 4.1材料特性影響 34 4.2 有限元素法模擬 37 4.3彈性力學計算 39 第五章 感測電路理論分析 41 5.1感測電路配置 41 5.2鎖相放大電路分析 42 5.3元件電性分析 44 5.3.1等效電路模型 44 5.3.2 單電子傳輸分析 46 第六章 元件結構與製程設計 50 6.1元件結構 50 6.2製程設計 51 6.2.1 製程目標 51 6.2.2 製程步驟與參數 51 6.3實作元件 56 第七章 分析與量測 59 7.1拉曼光譜分析 59 7.2量測電路製作 62 7.3量測儀器 63 7.4共振訊號量測 64 7.4.1量測參數 64 7.4.2無裝置元件之電路測試 64 7.4.3未施加閘極偏壓的共振訊號 65 7.4.3施加不同閘極偏壓的共振訊號 67 7.5 小結 73 第八章 結論 74 參考文獻 76

    [1]Marc J. Madou, “Fundamentals of Microfabracation”, CRC PRESS.
    [2] Vera Sazonova, et al., “A Tunable Carbon Nanotube Electromechanical Oscillator”, Nature 2004, Vol. 431, 284.
    [3] S. Iijima, et al., “Helical Microtubules of Graphitic Carbon”, Nature, 1991, Vol. 354, 56.
    [4]John F. Davis, et al., “High-Q Mechanical Resonator Arrays Based on Carbon Nanotubes”, IEEE-NANO, 2003, Vol 2, 635.
    [5] C. T.-C. Nguyen, “Vibrating RF MEMS for Low Power Communications,” MRS Meeting, Boston, MA, Dec. 2-6, 2002.
    [6]Zhan-chun Tu, et al., “Single-walled and Multiwalled Carbon Nanotube with The Effect Young’s Moduli Dependent on Layor Number”, Physical Review B, 2002, Vol. 65, 233407.
    [7]S. Sapmaz, et al., “Carbon Nanotubes as NanoElectromechanical Systems”, Physical Review B, 2003, Vol. 67, 235414.
    [8]T.A Fulton, et al., “Observation of Single-Electron Charging Effects in Small Tunnel Junctions, Physical Review Letter, 1987, Vol. 59, 109.
    [9]Leif Roschier, “Carbon Nanotube Single-Electron Devices at Audio and Radio Frequencies”, 2004, Helsinki University, Finland.
    [10]Robert G. Knobel and Andrew N. Cleland, “Nanometre-scale Displacement Sensing Using a Single-Electron Transistor”, Nature, 2003, Vol. 424, 291.
    [11] C. T.-C. Nguyen, “Microelectromechanical devices for wireless communications (invited),” Proceedings, 1998 IEEE International
    Micro Electro Mechanical Systems Workshop, Heidelberg, Germany, Jan. 25-29, 1998, pp. 1-7.
    [12] C. T.-C. Nguyen, Dig. of Papers, Topical Mtg on Silicon Monolithic IC’s in RF Systems, Sept. 12-14, 2001, pp. 23-32.
    [13] Nathanson, H. C., et al., “The Resonant Gate Transistor,” IEEE Trans. on Electron Dev., Vol. 14, 1967, pp117-133.
    [14] Putty, M. W., et al., “One-Port Active Polysilicon Resonant Microstructures,” IEEE Micro Electro Mechanical Systems Workshop,” Salt Lake City, 1989, pp. 60-65.
    [15] Wan-Thai Hsu, et al., “A Sub-Mcron Capacitive Gap Process For Multiple-Metal-Electrode Lateral Micromechanical Resonators,” IEEE, 2001.
    [16] Kun Wang, et al., “VHF Free-Free Beam High-Q Micromechanical Resonators,” IEEE Journal Of MicroElectroMechanical Systems., Vol. 9, No. 3, September 2000.
    [17] C.T.-C., et al., “CMOS Micromechanical Resonator Oscillator,” Technical Digest, IEEE International Electron Device Meeting, Washington, D.C., December 5-8, 1993, pp. 199-202.
    [18] Tang, W. C., et al., “Laterally Driven Polysilicon Resonant Microstructures,” IEEE Micro Electro Mechanical Systems Workshop, Salt Lake City, 1989, pp. 53-59.
    [19] J.R. Clark, W.-T. Hsu, and C.T.-C. Nguyen, "High-Q VHFMicromechanical Contour-mode Disk Resonator," Technical Digest, IEEE Int. Electron Devices Meeting, San Francisco, California, Dec.11-13, pp.493-496, 2000.
    [20] Ki Bang Lee, et al., “Design And Fabrication Of An Annular High Frequency Resonator,” 2002 ASME International Mechanical Engineering Congress & Exposition, New Orleans, Louisiana, November 17-22, 2002.
    [21] Jing Wang, et al., “Self-Aligned 1.14-GHz Vibrating Radial-Mode Disk Resonators,” IEEE Transducers, Boston, June 8-12, 2003.
    [22]B.I. Yakobson, et al., Physical Review Letter, 1996, Vol. 76, 2511.
    [23]B.I. Yakobson, et al., Am. Sci., 1997, Vol. 85, 324.
    [24]B.I. Yakobson and P. Avouris, in Carbon Nanotubes, edited by M. S. Dresselhaus and P. Avouris, 2001, pp.287-327.
    [25]K.N. Kudin, et al., Physical Review B, 2001, Vol. 64, 235406.
    [26]X. Zhou, et al., Physical Review B, 2000, Vol. 62, 13692.
    [27]J.P. Lu, Physical Review Letter, 1997, Vol. 79, 1297.
    [28] B. Babic, et al., “Intrinsic Thermal Vibrations of Suspended Doubly Clamped Single-Wall Carbon Nanotube”, Nano Letters, 2003, Vol. 3, No. 11, 1577.
    [29] R. Knobel, et al., “Single-Electron Transistor as a Radio-Frequency Mixer”, Applied Physics Letters, 2002, Vol. 81, No 3, 532.
    [30] Bert C. Henderson, “Mixers in Microwave Systems”, Watkins-Johnson Company. 1990, Vol. 17, No 1.
    [31] John R. Clark, et al., “High-Q VHF Micromechanical Contour-Mode Disk Resonators,” IEEE Int. Electron Devices Meeting, San Francisco, California, Dec. 11-13, 2000, pp. 493-496.
    [32] Mohamed A. Abdelmoneum, et al., “Stemless Wine-Glass-Mode Disk Micromechanical Resonators,” IEEE Micro Electro Mechanical Systems, 2003.
    [33]H.W. Kroto, Nature, 1985, Vol. 318, 162.
    [34] 賴育良, “ANSYS 電腦輔助工程分析,” 1997.
    [35] 康淵, “ANSYS 入門,” 1992.
    [36] 董建宏, “奈米碳管場發射二極元件之研製”, 2004.
    [37] B. Reulet et al., “Acoustoelectric Effects in Carbon Nanotubes,”
    Physical Review Letters 85: 2829-2832 (2000).
    [38]Standord Research Systems, “About Lock-in Amplifiers”, Application Note#3.
    [39]H. Ustunel, et al., “Modeling a Suspended Nanotube Oscillator”, Nano Letter, 2005, 3.7.
    [40] 陳啟東, “單電子電晶體的進展與應用”, 自然科學簡訊, 2003, Vol. 15, No 4.
    [41]Chunyu Li. and Tsu-Wei Chou, “Vibration Behaviors of Multiwalled-Carbon-Nanotube-based Nanomechanical resonators.
    [42]M. D. Lahaye, et al., “Approaching the Quantum Limit of a Nanomechanical Resonator”, Science, 2004, Vol. 304, 74.
    [43]Sander J. Tans, et al., “Electron-Electron Correlations in Carbon Nanotubes”, Nature, 1998, Vol. 394, 761.
    [44]Osawa, “非苯系超芳香族”, 化學(日), Vol. 25, 854
    [45]N. Mason, et al.,”Local Gate Control of a Carbon Nanotube Double Quantum Dot”, Science, 2004, Vol. 303, 655
    [46]Henk W. Ch. Postma, et al.,”Carbon Nanotube Single-Electron Transistors at Room Temperature”, Science, 2001, Vol. 293, 76
    [47]M.S. Dresselhaus, et al., ”Raman Spectroscopy on isolated single wall carbon nanotube”, Carbon, 2002, 2043-2061
    [48]J.Scott Bunch, et al., “Coulomb Oscillations and Hall Effect in Quasi-2D Graphite Quantum Dots, Nano Letters, 2004, Vol. 5, 287.
    [49]P.J.Burke, “An RF Circuit Model for Carbon Nanotubes”. Nanotechnology, 2003. Vol. 2, 55.
    [50]Ulas C. Cokkun, et al., “h/e Magnetic Flux Modulation of the Energy Gap in Nanotube Quantum Dots”, Science, 2004, Vol. 304, 1132.
    [51]Michael T. Woodside, et al., “Scanned Probe Imaging of Single-Electron Charge States in Nanotube Quantum Dots”, Science, 2002, Vol. 296, 1098.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE