簡易檢索 / 詳目顯示

研究生: 楊逸祥
Yang, Yi-Hsiang
論文名稱: 利用傅立葉分析進行動作雜訊消除之血氧感測系統
A Pulse Oximetry System with Motion Artifact Reduction by Fourier Analysis
指導教授: 鄭桂忠
Tang, Kea-Tiong
口試委員: 馬席彬
闕河鳴
柯立偉
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 45
中文關鍵詞: 血氧飽和度感測系統動作雜訊消除心電訊號傅立葉分析
外文關鍵詞: SpO2 sensory system, motion artifact reduction, ECG, Fourier analysis
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,由於健康照護逐漸受到重視,生醫訊號感測系統也蓬勃發展。從生醫訊號的擷取到後端的訊號分析都有可觀的人員投入其研究。良好的生醫訊號擷取系統有助於病症的早期檢測、日常健康狀況監測、緊急情況的辨識等。血氧飽和度(SpO2)為使用者血液中帶氧血紅素與不帶氧血紅素所佔有之比例,反映呼吸系統與循環系統的運作,已被廣泛運用於心肺功能與循環系統功能之檢視與監測。
    計算血氧飽和度必須取得人體之血液光容積變化波形,此訊號乃是藉由光電二極體(photodiode)接收發光二極體(LED)所發射之光線,由於血液光容積變化波形是基於光感測器所產生之訊號,因此其極易受到動作雜訊(motion artifact)影響,而在接收到的訊號上產生極大的擾動,然而在計算血氧飽和度時血液光容積變化之實際波形並非其重點,訊號的振幅(amplitude)才是關鍵,因此本研究提出了利用傅立葉分析搭配心電訊號以減少動作雜訊干擾血氧飽和度計算之演算法。本研究並開發了血氧飽和度感測系統,包含了血液光容積變化波形感測器、類比訊號處理單元與控制訊號產生單元。而動作雜訊消除以及血氧飽和度計算則是將資料蒐集並數位化後送至電腦中進行。
    實驗結果證明了本論文所提出之血氧飽和度感測系統與動作雜訊消除驗算法之可行性與可靠度,於論文最後則提出了未來可改進之方向與發展。


    Nowadays, mobile health care has been greatly emphasized. Biomedical signal acquisition techniques developed rapidly over this decade. Blood oxygen saturation (SpO2) is the percentage of oxygenated hemoglobin among total hemoglobin. It reflects the situation of cardio-pulmonary function and is widely used is hospitals.
    In this study, a system that records photoplethysmography (PPG) and performs motion artifact reduction is introduced. In order to calculate SpO2, accurate amplitude of PPG is essential. As a matter of fact that the PPG signal is acquired through an optical sensor, it is prone to be affected by motion artifact. As a result, noise cancellation is a major issue in the calculation of SpO2. When computing SpO2, the exact waveform is not the key point, whereas the amplitude plays the important role. Therefore, Fourier analysis with ECG signal is adopted to perform the noise cancellation. In the proposed system, data acquisition and analog filtering is done on a printed circuit board (PCB) controlled by an FPGA. The acquired data are sent to a computer, where Fourier analysis is done to cancel motion artifact. Experiments have been done to demonstrate the performance of the proposed algorithm. The proposed system performs PPG signal acquisition, motion artifact reduction and SpO2 calculation.

    摘要 i Abstract iii 目錄 vii 圖目錄 ix 表目錄 x 第一章 序論 1 1.1 前言 1 1.2 研究目的與動機 2 1.3 論文架構 3 第二章 非侵入式血氧飽和濃度量測原理 4 2.1 血液光容積變化波形之形成原理 4 2.2 血氧飽和濃度定義 5 2.3 血氧飽和度之量測方式 6 2.3.1 侵入式血氧量測 6 2.3.2 脈動式(非侵入式)血氧量測 6 2.4 脈動式血氧飽和濃度之計算方式 6 2.4.1 比爾蘭伯特定律(Beer-Lambert Law) 6 2.4.2 血紅素之吸收光譜 7 2.4.3 脈動式血氧飽和濃度之推導 8 2.4.4 發光二極體(LED)之修正 11 第三章 非侵入式血氧飽和度感測系統 12 3.1系統架構 12 3.2 血液光容積變化波形感測器 13 3.3發光二極體驅動電路(LED Driver) 14 3.4 轉阻放大器(Transimpedance Amplifier) 16 3.5 類比訊號處理 17 3.5.1 分離兩波長之訊號 17 3.5.2 濾波與放大電路電路 18 3.5.3 數位類比轉換(ADC) 19 3.6 量測結果 20 第四章 動作雜訊消除 23 4.1 心電訊號(Electroencephalography, EEG) 23 4.2 血液光容積變化波形分析 25 4.3 利用心電訊號進行動作雜訊消除 31 4.3.1 心電訊號擷取 31 4.3.2 量測結果 32 4.4動作雜訊消除之實驗與結果 34 4.4.1 手指搖動 35 4.4.2 手指彎曲 37 4.5 實驗結果討論 40 第五章 結論與未來工作 41 參考文獻 42

    [1] W. R. Mower, C. Sachs, E. L. Nicklin, and L. J. Baraff, “Pulse oximetry as a fifth pediatric vital sign.” Pediatrics, vol. 99, no. 5, pp. 681-686, 1997
    [2] I. Fine, and A. Weinreb, “Multiple scattering effect in transmission pulse oximetry,” Medical and Biological Engineering and Computing, vol. 33, no. 5, pp. 709–712, 1995.
    [3] G.W.J Clarke, AD.C. Chan, and A. Adler, "Effects of motion artifact on the blood oxygen saturation estimate in pulse oximetry," 2014 IEEE International Symposium on Medical Measurements and Applications (MeMeA), pp.1-4, 2014
    [4] J. A. Adams, I. M. Inman, S. A. Abreu, I. A. Zabaleta, M. A. Sackner, “A computer algorithm for differentiating valid from distorted pulse oximeter waveforms in neonates, ” Vol. 19, No. 5, pages 307–311, 1995
    [5] J. Krait, and H. Ewald, “Optical non-invasive methods for characterization of the human health status, “1st International Conference on Sensing Technology, pp.466-470, 2005
    [6] J.A.C. Patterson, D.G. McIlwraith, Guang-Zhong Yang, "A Flexible, Low Noise Reflective PPG Sensor Platform for Ear-Worn Heart Rate Monitoring," Sixth International Workshop on Wearable and Implantable Body Sensor Networks, pp.286-291, 2009
    [7] Y. K. Lee, O. W. Kwon, H. S. Shin, J. Jo, Y. Lee, "Noise reduction of PPG signals using a particle filter for robust emotion recognition," 2011 IEEE International Conference on Consumer Electronics - Berlin (ICCE-Berlin), pp.202-205, 2011
    [8] N. Selvaraj, K.H. Shelley, D.G. Silverman, N. Stachenfeld, N. Galante, J.P. Florian, Y. Mendelson, K.H. Chon, "A Novel Approach Using Time–Frequency Analysis of Pulse-Oximeter Data to Detect Progressive Hypovolemia in Spontaneously Breathing Healthy Subjects," IEEE Transactions on Biomedical Engineering, vol.58, no.8, pp.2272-2279, 2011
    [9] Y. Mendelson, “Pulse oximetry: theory and applications for noninvasive monitoring,” Clin Chem , pp. 1601-1607,1992.
    [10] J. W. Severinghaus, and P. B. Astrup, “History of blood gas analysis. VI. Oximetry,” Journal of Clinical Monitoring, vol. 2, pp. 270-288, 1986.
    [11] J. W. Severinghaus, and S. O. Koh, “Effect of anemia on pulse oximeter accuracy at low saturation,” Journal of Clinical Monitoring, vol. 6, Issue 2 , pp 85-88, 1990.
    [12] T. L. Rusch, J. E. Scharf, R. Sankar, “Alternate pulse oximetry algorithms for SpO2 computation,” IEEE Engineering in Medicine and Biology Society Conference, pp. 848–849, 1994.
    [13] Masimo, Signal Extraction Technology, http://www.masimo.com.
    [14] C. Y. Wang, K. T. Tang, “Motion Artifacts Reduction in Pulse Oximeter for Health Care System”, 2011
    [15] M. S. Qureshi, M. Pickett, F. Miao, J. P. Strachan, "CMOS interface circuits for reading and writing memristor crossbar array," 2011 IEEE International Symposium on Circuits and Systems (ISCAS), pp.2954-2957, 2011
    [16] R. Paschotta, “Photodiodes,“ Encyclopedia of Laser Physics and Technology, 2008
    [17] F. E. Smith, P. Langley, L. Trahms, U. Steinhoff, J. P. Bourke, A. Murray, "Effects of filtering on automatic repolarisation measurements using magnetocardiography," Computers in Cardiology, 2002, pp.337-340, 2002
    [18] D. Thanapatay, C. Suwansaroj, C. Thanawattano, "ECG beat classification method for ECG printout with Principle Components Analysis and Support Vector Machines," 2010 International Conference On Electronics and Information Engineering (ICEIE), pp.72-75, 2010
    [19] M. Yang, Q. Ai, Q. Liu, "Design of a high-performance EEG acquisition system for unshielded environment," 2012 IEEE/ASME International Conference on Mechatronics and Embedded Systems and Applications (MESA), pp.202-206, 2012
    [20] http://en.wikipedia.org/wiki/Electrocardiography
    [21] B. G. Lee, and W. Y. Chung, "A Smartphone-Based Driver Safety Monitoring System Using Data Fusion." Sensors 12, no. 12, pp. 17536-17552, 2012
    [22] Micromedical, “Pulse Contour Analysis & Theory,” http://www.micromedical.co.uk/.
    [23] J. AC. Patterson, D. G. McIlwraith, Guang-Zhong Yang, "A Flexible, Low Noise Reflective PPG Sensor Platform for Ear-Worn Heart Rate Monitoring," Sixth International Workshop on Wearable and Implantable Body Sensor Networks, pp.286-291, 2009

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE