簡易檢索 / 詳目顯示

研究生: 洪育良
Hong, Yu-Liang
論文名稱: 非極性氮化銦薄膜之磊晶成長與物性分析
Epitaxial Growth and Fundamental Properties of Nonpolar InN Films
指導教授: 果尚志
口試委員: 陳衛國
安惠榮
張玉明
張文豪
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 140
中文關鍵詞: 氮化銦極化率光致極化光殘餘應力
外文關鍵詞: Indium nitride, polarization, photoluminescence, strain
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中分子束磊晶成長方法被應用在三五族氮化物的異質磊晶成長,其中以高品質的非極性氮化銦薄膜之基本物性為主要研究。對於非極性氮化銦薄膜的表面形貌,晶格結構和光學性質提出詳細的分析,說明樣品的高品質結構。目前以wurtzite結構的非極性三五族氮化物來說,由於c軸平躺在in-plane上的緣故,使得薄膜有非等向異性的光學和結構特性。因為氮化銦薄膜和藍寶石基版之間的晶格不匹配和熱膨脹係數差異極大,會有非等向異性的應力產生。在光致發光極化方面,光譜峰值位置和強度取決於wurtzite結構中c軸相對應方位關係。在變溫實驗中,隨著溫度變化會有著相對應的殘餘應力產生,影響氮化銦的電子能帶結構,造成極化率隨溫度的改變。最大極化率發生在低溫下,隨著溫度的增加而逐漸減小。此外,在雙軸的殘餘應力下,造成帶間躍遷中有價帶分裂的情形,影響氮化銦的峰值能量位移與諧振子強度是隨之改變的。最後,利用k‧p近似理論完整地,把應力修改的電子能帶結構之峰值能量位移與諧振子強度隨著溫度變化,可以跟實驗上測量出的光致極化光做詳細的分析與研究。


    Contents 摘要 Abstract Chapter 1 Introduction 1 1.1 Group III-nitride semiconductor 1 1.2 Historical survey of nonpolar III-nitrides growth achievements 7 1.3 Polarization anisotropy of nonpolar InN 9 1.4 Application of nonpolar InN 12 1.4.1 Intense terahertz emission from a-plane InN surface 12 1.4.2 Investigation on −c-InN and a-InN:Mg field effect transistors under Electrolyte gate bias 16 Chapter 2 The Systems of Epitaxial Growth and Optical Characterizations: Plasma-assisted Molecular Beam Epitaxy, Photoluminescence Measurement 20 2.1 Introduction 20 2.2 Plasma-assisted molecular beam epitaxy (PA-MBE) 21 2.3 Photoluminescence (PL) spectroscopy 24 2.4 Laboratory cryostat 29 2.5 Synchrotron-radiation x-ray diffraction (SR-XRD) 30 Chapter 3 Nonpolar III-Nitride Semiconductor Epitaxial Films Grown by Plasma-assisted Molecular beam epitaxy (PA-MBE) 31 3.1 Introduction 31 3.2 Nonpolar III-nitride films growth by PA-MBE 34 3.3 Crystalline structure and strain properties studied by RHEED and XRD 39 3.3.1 Structural characterization of nonpolar InN thin film layers by XRD 41 3.3.2 Morphology 49 3.3.3 Anisotropic strain XRD 53 3.4 Raman spectra 54 Chapter 4 Structural and optical polarization properties of InN 57 4.1 Introduction 57 4.2 Crystal structure of InN 60 4.2.1 Strain and stress 61 4.2.2 Strain state for different growth orientations 64 4.2.3 Lattice constants and thermal expansion parameters of various substrates 66 4.2.4 Measurement of in-plane strain 69 4.3 Modification of the band structure due to in-plane strain 70 4.3.1 Bir-Pikus approach for k•p perturbation in wurtzite semiconductor 72 4.3.2 Strain modified band structure for c-, a-, and m-plane InN 79 4.4 Polarization anisotropy of nonpolar InN 96 4.5 Summary 98 Chapter 5 Polarized photoluminescence from nonpolar InN epitaxial film: Effects of temperature-dependent anisotropic strain 99 5.1 Introduction 99 5.2 Preparation and characterization of nonpolar InN 102 5.3 Temperature-dependent PL of nonpolar InN 105 5.4 Power-dependent PL of nonpolar InN 111 5.5 Polarization anisotropy of photoluminescence 115 5.6 Temperature-dependent behavior of PL anisotropy 117 5.7 Summary 123 Chapter 6 Conclusions 124 Reference 127 Publications 139

    Reference
    Chapter 1
    [1-1] F. Bernardini, V. Fiorentini and D. Vanderbilt, Phys. Rev. B 56, R10024 (1997).
    [1-2] V. Fiorentini, F. Bernardini, and F. Sala Della, Phys. Rev. B 60, 8849 (1999).
    [1-3] B. Monemar and G. Pozina, Prog. Quant. Electron. 24,239 (2000).
    [1-4] S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, Appl. Phys. Lett. 69, 4188 (1996).
    [1-5] R. Dingle, D. D. Sell, S. E. Stokowski, and M. Ilegems, Phys. Rev. B, Condens. Matter 4, 1211 (1971).
    [1-6] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, Appl. Phys. Lett. 48, 353 (1986).
    [1-7] S. Nakamura, Jpn. J. Appl. Phys. 30, L1705 (1991).
    [1-8] S. Nakamura, T. Mukai, and M. Senoh, Jpn. J. Appl. Phys. 30, L1998 (1991).
    [1-9] S. Nakamura, N. Iwasa, M. Senoh, and T. Mukai, Jpn. J. Appl. Phys. 31, 1258 (1992).
    [1-10] S. Nakamura, T. Mukai, and M. Senoh, Appl. Phys. Lett. 64, 1687 (1994).
    [1-11] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, Jpn. J. Appl. Phys. 35, L74 (1996).
    [1-12] S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, Jpn. J. Appl. Phys. 34, L1332 (1995).
    [1-13] S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, Jpn. J. Appl. Phys. 34, L797 (1995).
    [1-14] K. P. O'Donnell, R. W. Martin, and P. G. Middleton, Phys. Rev. Lett. 82, 237 (1999)
    [1-15] H.-W. Lin, Y.-J. Lu, H.-Y. Chen, H.-M. Lee, and S. Gwo, Appl. Phys. Lett. 97, 073101 (2010).
    [1-16] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, Y. Saito, and Y. Nanishi, Appl. Phys. Lett. 94, 4457 (2002).
    [1-17] F. Bernardini, V. Fiorentini, and D. Vanderbilt, Phys. Rev. B 56, R10024 (1997).
    [1-18] V. Fiorentini, F. Bernardini, F. Della Sala, A. Di Carlo, and P. Lugli, Phys. Rev. B 60, 8849 (1999).
    [1-19] N. F. Gardner, J. C. Kim, J. J. Wierer, Y. C. Shen, and M. R. Krames, Appl. Phys. Lett. 86, 111101 (2005).
    [1-20] K. Okamoto, H. Ohta, S. F. Chichibu, J. Ichihara, and H. Takasu, Jpn. J. Appl. Phys. Part2 46, L187 (2007).
    [1-21] T. Koyama, T. Onuma, H. Masui, A. Chakraborty, B. A. Haskell, S. Keller, U. K. Mishra, J. S. Speck, S. Nakamura, S. P. DenBaars, T. Sota, and S. F. Chichibu, Appl. Phys. Lett. 89, 091906 (2006).
    [1-22] K. Okamoto, J. Kashiwagi, T. Tanaka, and M. Kubota, Appl. Phys. Lett. 94, 071105 (2009).
    [1-23] R. M. Farrell, D. F. Feezell, M. C. Schmidt, D. A. Haeger, K. M. Kelchner, K. Iso, H. Yamada, M. Saito,K. Fujito, D. A. Cohen, J. S. Speck, S. P. DenBaars, and S. Nakamura, Jpn. J. Appl. Phys. Part2 46, L761 (2007).
    [1-24] J. F. Nye, Physical Properties of Crystals Their Representation by Tensors and Matrices (Oxford University Press, New York, 1985).
    [1-25] T. Takeuchi, H. Amano, I. Akasaki, Jpn. J. Appl. Phys. Part 1 39, 413 (2000).
    [1-26] M. Sano and M. Aoki, Jpn. J. Appl. Phys. 15, 1943 (1976).
    [1-27] P. Waltereit, O. Brandt and K. H. Ploog, Appl. Phys. Lett. 75, 2029 (1999).
    [1-28] K. Dovidenko, S. Oktyabrsky and J. Narayan, J. Appl. Phys. 82, 4296 (1997).
    [1-29] M. D. Craven, S. H. Lim, F. Wu, J. S. Speck, and S. P. DenBaars, Appl. Phys. Lett. 81, 1201 (2002).
    [1-30] T. Sasaki and S. Zembutsu, J. Appl. Phys. 61, 2533(1987).
    [1-31] H. M. Ng, Appl. Phys. Lett. 80, 4369(2002).
    [1-32] H. Lu, W. J. Schaff, L. Eastman, et al. Appl. Phys. Lett. 83, 1136(2003).
    [1-33] C. Q. Chen, V. Adivarahan, J. W. Yang et al., Jpn. J. Appl. Phys. 42, L1039 (2003).
    [1-34] A. Chitnis, C. Chen, V. Adivarahan et al., Appl. Phys. Lett. 84, 3663 (2004).
    [1-35] B. A. Haskell, T. J. Baker, M. B. McLaurin et al., J. Electron. Mater. 34, 357 (2005).
    [1-36] R. Armitage, Q. Yang and E. R. Weber, MRS Internet J. Nitride Semicond. Res. 8, 6 (2003).
    [1-37] C. Rivera, J. L. Pau, E. Munoz, O. Brandt, H. T. Grahn, and K. H. Ploog, Appl. Phys. Let. 88, 213507(2006).
    [1-38] S. Ghosh, C. Rivera, J. L. Pau, E. Muñoz, O. Brandt, and H. T. Grahn, Appl. Phys. Let. 90, 091110 (2007).
    [1-39] R. Goldhahn, P. Schley, A.T. Winzer, M. Rakel, C. Cobet, N. Esser, H. Lu, and W.J. Schaff, J. Crys. Growth, 288, 273 (2006).
    [1-40] S. Ghosh, P. Waltereit, O. Brandt, H. T. Grahn, and K. H. Ploog, Phys. Rev. B 65, 075202 (2002)
    [1-41] S. Ghosh, P. Waltereit, O. Brandt, H. T. Grahn, and K. H. Ploog, Appl. Phys. Lett. 80, 413(2002).
    [1-42] J. Bhattacharyya and S. Ghosh, Phys. Stat. Sol. (a) 204, 439 (2007).
    [1-43] J. Bhattacharyya, S. Ghosh, M. R. Gokhale, B. M. Arora, H. Lu, and W. J. Schaff, Appl. Phys. Lett. 89, 151910 (2006).
    [1-44] K. Wang, T. Yamaguchi, A. Takeda, T. Kimura, K. Kawashima, T. Araki, and Y. Nanishi, Phys. Stat. Sol. (a) 207, 1356 (2010).
    [1-45] B. Liu, R. Zhang, Z. L. Xie, J. Y. Kong, J. Yao, Q. J. Liu, Z. Zhang, D. Y. Fu, X. Q. Xiu, P. Chen, P. Han, Y. Shi, Y. D. Zheng, S. M. Zhou, and G. Edwards, Appl. Phys. Lett. 92, 261906 (2008).
    [1-46] C. Rivera, P. Misra, J. L. Pau, E. Muñoz, O. Brandt, H. T. Grahn, and K. H. Ploog, J. Appl. Phys. 101, 053527 (2007).
    [1-47] R. Acsazubi, I. Wilke, K. Denniston, H. L. Lu, and W. J. Schaff, Appl. Phys. Lett. 84, 4810 (2004).
    [1-48] B. Pradarutti, G. Matthäus, C. Brückner, S. Riehemann, G. Notni, S. Nolti, V. Cimalla, V. Lebedev, O. Ambacher, and A. Tünnermann, Proc. SPIE 6194, 619401 (2006).
    [1-49] V. Cimalla, B. Pradarutti, G. Matthäus, C. Brückner, S. Riehemann, G. Notni, S. Nolte, A. Tünnermann, V. Lebedev, and O. Ambacher, Phys. Status Solidi B 244, 1829 (2007).
    [1-50] G. D. Chern, E. D. Readinger, H. Shen, M. Wraback, C. S. Gallinat, G. Koblmuller, and J. S. Speck, Appl. Phys. Lett. 89, 141115 (2006).
    [1-51] H. Ahn, Y.-P. Ku, Y.-C. Wang, C.-H. Chuang, S. Gwo, and C.-L. Pan, Appl. Phys. Lett. 91, 132108 (2007).
    [1-52] D. Segev and C. G. Van de Walle, Europhys. Lett. 76, 305 (2006); C. G. Van de Walle and D. Segev, J. Appl. Phys. 101, 081704 (2007).
    [1-53] Y. Cui, Q. Wei, H. Park, and C. M. Lieber, Science 293, 1289 (2001).
    [1-54] X. T. Zhou, J. Q. Hu, C. P. Li, D. D. D. Ma, C. S. Lee, and S. T. Lee, Chem. Phys. Lett. 369, 220 (2003).
    [1-55] G. Steinhoff, M. Hermann, W. J. Schaff, L. F. Eastman, M. Stutzmann, and M. Eickhoff, Appl. Phys. Lett. 83, 177 (2003).
    [1-56] R. Neuberger, G. Müller, O. Ambacher, and M. Stutzmann, Phys. Status Solidi A 185, 85 (2001).
    [1-57] Y. Alifragis, A. Georgakilas, G. Konstantinidis, E. Iliopoulos, A. Kostopoulos, and N. A. Chaniotakis, Appl. Phys. Lett. 87, 253507 (2005).
    [1-58] T. Kokawa, T. Sato, H. Hasegawa, and T. Hashizume, J. Vac. Sci. Technol. B 24, 1972 (2006).
    [1-59] B. S. Kang, F. Ren, M. C. Kang, C. Lofton, W. Tan, S. J. Pearton, A. Dabiran, A. Osinsky, and P. P. Chow, Appl. Phys. Lett. 86, 173502 (2005).
    [1-60] B. S. Kang, H. T. Wang, F. Ren, and S. J. Pearton, J. Appl. Phys. 104, 031101 (2008).
    [1-61] C.-F. Chen, C.-L. Wu, and S. Gwo, Appl. Phys. Lett. 89, 252109 (2006).
    [1-62] Y.-S. Lu, C.-C. Huang, J. A. Yeh, C.-F. Chen, and S. Gwo, Appl. Phys. Lett. 91, 202109 (2007).
    [1-63] Y.-S. Lu, C.-L. Ho, J. A. Yeh, H.-W. Lin, and S. Gwo, Appl. Phys. Lett. 92, 212102 (2008).
    [1-64] H. Lu, W. J. Schaff, L. F. Eastman, and C. E. Stutz, Appl. Phys. Lett. 82, 1736 (2003).
    [1-65] I. Mahboob, T. D. Veal, C. F. McConville, H. Lu, and W. J. Schaff, Phys. Rev. Lett. 92, 036804 (2004).
    [1-66] G. F. Brown, J. W. Ager III, W. Walukiewicz, W. J. Schaff, and J. Wu, Appl. Phys. Lett. 93, 262105 (2008).
    Chapter 2
    [2-1] S. Perkowitz, Optical Characterization of Semiconductors: Infrared, Raman, and Photoluminescence Spectroscopy (Academic Press /London /c1993).
    Chapter 3
    [3-1] R. Juza and H. Hahn, Z. Anorg. Alleg. Chem. 239, 282 (1938).
    [3-2] T. L. Tansley and C. P. Foley, J. Appl. Phys. 59, 3241 (1986).
    [3-3] J. Wu1, W. Walukiewicz, S. X. Li, R. Armitage, J. C. Ho, E. R. Weber, E. E. Haller, Hai Lu, William J. Schaff, A. Barcz, and R. Jakiela, Appl. Phys. Lett. 84, 2805 (2004).
    [3-4] V. Yu. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmu¨ller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, and J. Graul, Phys. Status Solidi B 229, R1 (2002).
    [3-5] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, Appl. Phys. Lett. 80, 3967 (2002).
    [3-6] K. Xu and A. Yoshikawa, Appl. Phys. Lett. 83, 251 (2003).
    [3-7] S. Gwo, C.-L. Wu, C.-H. Shen, W.-H. Chang, T. M. Hsu, J.-S. Wang, and J.-T. Hsu, Appl. Phys. Lett. 84, 3765 (2004).
    [3-8] C.-L. Wu, J.-C. Wang, M.-H. Chan, T. T. Chen, and S. Gwo, Appl. Phys. Lett. 83, 4530 (2003).
    [3-9] C.-L. Wu, C.-H. Shen, H.-W. Lin, H.-M. Lee, and S. Gwo, Appl. Phys. Lett. 87, 241916 (2005).
    [3-10] V. Yu. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmüller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, and J. Graul, Phys. Stat. Sol. (b) 229, R1 (2002).
    [3-11] V. Yu. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmüller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, and J. Graul, Phys. Stat. Sol. (b) 229, R1 (2002).
    [3-12] H. Lu, W. J. Schaff, L. F. Eastman, J. Wu, W. Walukiewicz, V. Cimalla, and O. Ambacher, Appl. Phys. Lett. 83, 1136 (2003).
    [3-13] C. J. Sun and M. Razeghi, Appl. Phys. Lett. 63, 973 (1993).
    [3-14] T. Paskova, P. P. Paskov, E. Valcheva, V. Darakchieva, J. Birch, A. Kasic, B. Arnaudov, S. Tungasmita, B. Monemar, Phys. Stat. Sol. (a) 201, 2265 (2004).
    [3-15] V. E. Henrich, Rep. Prog. Phys. 48, 1481 (1985).
    [3-16] T. Lei, K. F. Ludwig and T. D. Moustakas, J. Appl. Phys. 74, 4430 (1993).
    [3-17] Y. J. Sun, O. Brandt and K. H. Ploog, J. Vac. Sci. Technol. B 21, 1350 (2003) .
    [3-18] M. D. Craven, S. H. Lim, F. Wu, J. S. Speck and S. P. DenBaars, Appl. Phys. Lett. 81, 1201 (2002).
    [3-19] T. Y. Liu, A. Trampert, Y. J. Sun, O. Brandt and K. H. Ploog, Philos. Mag. 84, 435(2004).
    [3-20] H.Wang, C. Chen, Z. Gong, J. Zhang, M. Gaevski, M. Su, J. Yang and M. A. Khan, Appl. Phys. Lett. 84, 499 (2004).
    [3-21] T. Paskova, R. Kroeger, S. Figge, D. Hommel, V. Darakchieva, B. Monemar, E. Preble, A. Hanser, N. M. Williams and M. Tutor, Appl. Phys. Lett. 89, 051914 (2006)
    [3-22] M. Marezio, Acta Crystallogr. A 18, 481(1965).
    [3-23] M. A. L. Johnson, W. C. Hughes, W. H. Rowland, J. W. Cook, J. F. Schetzina, M. Leonard, H. S. Kong, J. A. Edmond and J. Zavada, J. Cryst. Growth 175, 72 (1997)
    [3-24] J. W. Lee, S. J. Pearton, C. R. Abernathy, J. M. Zavada and B. L. H. Chai, J. Electrochem. Soc. 143, L169 (1996).
    [3-25] W. A. Doolittle, S. Kang, T. J. Kropewnicki, S. Stock, P. A. Kohl and A. S. Brown, J. Electon. Mater. 27, L58(1998).
    [3-26] B. Chai, private communication.
    Chapter 4
    [4-1] J. Bhattacharyya, S. Ghosh, M. R. Gokhale, B. M. Arora, H. Lu, and W. J. Schaff, Appl. Phys. Lett. 89, 151910 (2006)
    [4-2] J. Bhattacharyya and S. Ghosh, Phys. Stat. Sol. (a) 204, 439 (2007).
    [4-3] K. Wang, T. Yamaguchi, A. Takeda, T. Kimura, K. Kawashima, T. Araki, and Y. Nanishi, Phys. Stat. Sol. (a) 207, 1356 (2010).
    [4-4] S. Ghosh, P. Waltereit, O. Brandt, H. T. Grahn, and K. H. Ploog, Phys. Rev. B 65, 075202 (2002).
    [4-5] S. Ghosh, P. Waltereit, O. Brandt, H. T. Grahn, and K. H. Ploog, Appl. Phys. Lett. 80, 413(2002).
    [4-6] C. Rivera, P. Misra, J. L. Pau, E. Muñoz, O. Brandt, H. T. Grahn, and K. H. Ploog, J. Appl. Phys. 101, 053527 (2007).
    [4-7] B. Liu, R. Zhang, Z. L. Xie, J. Y. Kong, J. Yao, Q. J. Liu, Z. Zhang, D. Y. Fu, X. Q. Xiu, P. Chen, P. Han, Y. Shi, Y. D. Zheng, S. M. Zhou, and G. Edwards, Appl. Phys. Lett. 92, 261906 (2008).
    [4-8] E. O. Kane, J. Phys. Chem. Solids 1, 249 (1957).
    [4-9] L. C. de Carvalho, A. Schleife, F. Fuchs, and F. Bechstedt, Appl. Phys. Lett. 97, 232101 (2010)
    [4-10] G. L. Bir and G. E. Pikus, Symmetry and Strain Induced Effects in Semiconductors (Wiley, New York, 1974).
    [4-11] M. Suzuki and T. Uenoyama, Jpn. J. Appl. Phys. Part 1 35, 543 (1996).
    [4-12] M. Suzuki and T. Uenoyama, Group III Nitride Semiconductor Compounds (Clarendon, Oxford, 1998).
    [4-13] M. Suzuki, T. Uenoyama, and A. Yanase, Phys. Rev. B 52,8132 (1995).
    [4-14] S. Ghosh, P. Waltereit, O. Brandt, H. T. Grahn, and K. H. Ploog. Phys. Rev. B 65, 075202 (2002).
    [4-15] P. Carrier and S. H. Wei, J. Appl. Phys. 97, 033703 (2005).
    [4-16] I. Vurgaftman and J. R. Meyer, J. Appl. Phys. 94, 3675 (2003).
    [4-17] M. Suzuki and T. Uenoyama. Jpn. J. Appl. Phys. 35, 543 (1996).
    [4-18] M.Feneberg, J.Däubler, K. Thonke, and R. Sauer, Phys. Rev. B 77, 245207 (2008).
    [4-19] N. W. Ashcroft and N. D. Mermin, Solid State Physics (Thomson Brooks/Cole, California, 1976).
    [4-20] B. Cockayne and B. Lent, J. Cryst. Growth 54, 546 (1981).
    [4-21] N. Teofilov, K. Thonke, R. Sauer, D.G. Ebling, L. Kirste, and K.W. Benz, Diam. Relat. Mater. 10, 1300 (2001).
    [4-22] S. Strite and H. Morkoç, J. Vac. Sci. Technol. B 10, 1237 (1992).
    [4-23] K. Domen, K. Horino, A. Kuramata, and T. Tanahashi, Appl. Phys. Lett. 70, 987 (1997).
    [4-24] P. Carrier and S. H. Wei, J. Appl. Phys. 97, 033703 (2005).
    Chapter 5
    [5-1] F. Bernardini, V. Fiorentini, and D. Vanderbilt, Phys. Rev. B 56, R10024 (1997).
    [5-2] V. Fiorentini, F. Bernardini, F. Della Sala, A. Di Carlo, and P. Lugli, Phys. Rev. B 60, 8849 (1999).
    [5-3] P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, Nature (London) 406, 865 (2000).
    [5-4] M. D. Craven, S. H. Lim, F. Wu, J. S. Speck, and S. P. DenBaars, Appl. Phys. Lett. 81, 469 (2002).
    [5-5] H. Lu, W. J. Schaff, L. F. Eastman, J. Wu, W. Walukiewicz, V. Cimalla, and O. Ambacher, Appl. Phys. Lett. 83, 1136 (2003).
    [5-6] N. F. Gardner, J. C. Kim, J. J. Wierer, Y. C. Shen, and M. R. Krames, Appl. Phys. Lett. 86, 111101 (2005).
    [5-7] T. Koyama, T. Onuma, H. Masui, A. Chakraborty, B. A. Haskell, S. Keller, U. K. Mishra, J. S. Speck, S. Nakamura, S. P. DenBaars, T. Sota, and S. F. Chichibu, Appl. Phys. Lett. 89, 091906 (2006).
    [5-8] K. Okamoto, H. Ohta, S. F. Chichibu, J. Ichihara, and H. Takasu, Jpn. J. Appl. Phys. Part 2 46, L187 (2007).
    [5-9] M.C. Schmidt, K. C. Kim, R. M. Farrell, D. F. Feezell, D. A. Cohen, M. Saito, K. Fujito, J. S. Speck, S. P. BenBaars, and S. Nakamura, Jpn. J. Appl. Phys. Part 2 46, L190 (2007).
    [5-10] K. Okamoto, J. Kashiwagi, T. Tanaka, and M. Kubota, Appl. Phys. Lett. 94, 071105 (2009).
    [5-11] S. Ghosh, P. Waltereit, O. Brandt, H. T. Grahn, and K. H. Ploog, Phys. Rev. B 65, 075202 (2002).
    [5-12] S. Ghosh, P. Waltereit, O. Brandt, H. T. Grahn, and K. H. Ploog, Appl. Phys. Lett. 80, 413 (2002).
    [5-13] C. Rivera, P. Misra, J. Luis Pau, E. Muñoz, O. Brandt, H. T. Grahn, and K. H. Ploog, J. Appl. Phys. 101, 053527 (2007).
    [5-14] B. Liu, R. Zhang, Z. L. Xie, J. Y. Kong, J. Yao, Q. J. Liu, Z. Zhang, D. Y. Fu, X. Q. Xiu, P. Chen, P. Han, Y. Shi, Y. D. Zheng, S. M. Zhou, and G. Edwards, Appl. Phys. Lett. 92, 261906 (2008).
    [5-15] J. Bhattacharyya, S. Ghosh, M. R. Gokhale, B. M. Arora, H. Lu, and W. J. Schaff, Appl. Phys. Lett. 89, 151910 (2006).
    [5-16] J. Bhattacharyya and S. Ghosh, Phys. Stat. Sol. A 204, 439 (2007).
    [5-17] K. Wang, T. Yamaguchi, A. Takeda, T. Kimura, K. Kawashima, T. Araki, and Y. Nanishi, Phys. Stat. Sol. A 207, 1356 (2010).
    [5-18] V. Yu. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmüller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, and J. Graul, Phys. Stat. Sol. B 229, R1 (2002).
    [5-19] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, Appl. Phys. Lett. 80, 3967 (2002).
    [5-20] H. Ahn, Y.-P. Ku, C.-H. Chuang, C.-L. Pan, H.-W. Lin, Y.-L. Hong, and S. Gwo , Appl. Phys. Lett. 92, 102103 (2008).
    [5-21] Y.-S. Lu, Y.-H. Chang, Y.-L. Hong, H.-M. Lee, S. Gwo, and J. A. Yeh, Appl. Phys. Lett. 95, 102104 (2009).
    [5-22] S. Gwo, C.-L. Wu, C.-H. Shen, W.-H. Chang, T. M. Hsu, J.-S. Wang, and J.-T. Hsu, Appl. Phys. Lett. 84, 3765 (2004).
    [5-23] V. Darakchieva, M.-Y. Xie, N. Franco, F. Giuliani, B. Nunes, E. Alves, C. L. Hsiao, L. C. Chen, T. Yamaguchi, Y. Takagi, K. Kawashima, and Y. Nanishi, J. Appl. Phys. 108, 073529 (2010).
    [5-24] G. Shikata, S. Hirano, T. Inoue, M. Orihara, Y. Hijikata, H. Yaguchi, and S. Yoshida, Phys. Stat. Sol. C 5, 1808 (2008).
    [5-25] C.-L. Hsiao, J.-T. Chen, H.-C. Hsu, Y.-C. Liao, P.-H. Tseng, Y.-T. Chen, Z.-C. Feng, L.-W. Tu, M. M. C. Chou, L.-C. Chen, and K.-H. Chen, J. Appl. Phys. 107, 073502 (2010).
    [5-26] J.-H. Jou and L. Hsu, J. Appl. Phys. 69, 1384 (1991).
    [5-27] N. W. Ashcroft and N. D. Mermin, Solid State Physics (Brooks/Cole, Cengage Learning, Belmont, 1976), p. 494.
    [5-28] K. Wang and R. R. Reeber, Appl. Phys. Lett. 79, 1602 (2001).
    [5-29] T. L. Tansley, C. P. Foley, J. Appl. Phys. 59, 3241 (1986).
    [5-30] M. Sato, Jpn. J. Appl. Phys. Part 2 36, L658 (1997).
    [5-31] C. StampL, C. G. Van de Walle, D. Vogel, P. Kruger, J. Pollmann, Phys. Rev. B 61, R7846 (2000).
    [5-32] J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, W. J. Scha1, Phys. Rev. B 66, 201403 (2002).
    [5-33] G. Shikata, S. Hirano, T. Inoue, M. Orihara, Y. Hijikata, H. Yaguchi, S. Yoshida, J. Crys. Grow. 301, 517 (2007).
    [5-34] Y. Narukawa, Y. Kawakami, and S. Fujita, Phys. Rev. B 55, R1938 (1997).
    [5-35] C.-H. Shen, H.-Y. Chen, H.-W. Lin, S. Gwo, A. A. Klochikhin and V. Yu. Davydov, Appl. Phys. Lett. 88, 253104 (2006).
    [5-36] H. Lu, W. J. Schaff, L. F. Eastman, and C. E. Stutz, Appl. Phys. Lett. 82, 1736 (2003) .
    [5-37] I. Mahboob, T. D. Veal, C. F. McConville, H. Lu, and W. J. Schaff, Phys. Rev. Lett. 92, 036804 (2004).
    [5-38] V. Darakchieva, M. Schubert, T. Hofmann, B. Monemar, Ching-Lien Hsiao, Ting-Wei Liu, Li-Chyong Chen, W. J. Schaff, Y. Takagi, and Y. Nanishi, Appl. Phys. Lett. 95, 202103 (2009).
    [5-39] W. M. Linhart, T. D. Veal, P. D. C. King, G. Koblmüller, C. S. Gallinat, J. S. Speck, and C. F. McConville, Appl. Phys. Lett. 97, 112103 (2010).
    [5-40] J. Lee, E. S. Koteles, M. O. Vassell, Phys. Rev. B 33, 5512 (1986)
    [5-41] Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, Appl. Phys. Lett. 73, 1370 (1998)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE