簡易檢索 / 詳目顯示

研究生: 劉孝慈
Liu, Hsiao-Tzu
論文名稱: 支援多種影像標準之低成本反餘弦轉換核心
A Low-cost Multi-Standard Inverse Cosine Transform Core
指導教授: 張慶元
Chang, Tsin-Yuan
口試委員: 湯松年
陳竹一
張慶元
陳元賀
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 43
中文關鍵詞: 反餘弦轉換
外文關鍵詞: IDCT
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 透過摩爾定律 (Moore's Law)、超大積體電路 (Very-Large-Scale Integrated Circuit) 跨時代的演進,使得影像壓縮的領域朝向速度更快,體積更小並且同時支援多標準像是MPEG-1/2/4、H.264以及VC-1等SoC (System on Chip) 的晶片開發。MPEG-1/2/4、H.264以 及 VC-1 是很廣泛被應用的影像壓縮系統,在我的論文中就把MPEG4、 H.264、 VC-1以及最新的壓縮標準HEVC(H.265)整合在一起,有效率地實現出支援多標準的反餘弦轉換晶片。本篇論文提出了一種可以整合多種壓縮標準的架構來計算八點IDCT(反離散餘弦變換)的視頻編解碼器,共支援MPEG4,H.264/AVC,VC-1,和HEVC(今年一月國際電信聯盟(ITU)就已經正式批准通過了HEVC/H.265標準)。論文所提出的多標準硬體共用架構會比個別去實現更降低硬體成本,並確保計算過程中有共用到最多的電路,在設計上,只需要加法器和移位器就可以完成,不需要用到乘法器,大幅減低了係數運算中的重複片段,更利用此種共用特性得以建構低成本但支援多壓縮標準之轉換核心。。提出的方法不只讓架構只需加法器和移位器就可以完成,並用拆解係數的方法來進一步降低加法器的數目。因此,1-D轉換的核心只需要33(29+4)加法器和41(38+3)移位器,相較於乘法器來說要節省很多面積。最後,為了驗證,採用了TSMC 0.18的製程來實現這整合MPEG4,H.264/AVC,VC-1,和HEVC四種標準的晶片,其最高工作頻率是133.3 MHz,整體所用硬體的成本是19K。


    The thesis presents a unified hybrid architecture to compute the 8-point IDCT (Inverse Discrete Cosine Transform) of multiple modern video codecs—MPEG4, H.264/AVC, VC-1, and HEVC (under development). The proposed hardware sharing architecture requires lower hardware cost than that of the individual implementations and ensures the maximum circuit reuse during the computation. The proposed architecture design needs only adders and shifters to reduce the hardware cost significantly. The proposed method can increase the circuit sharing capability and further reduce the number of adders. Hence, the proposed 1-D transform core only needs 33(29+4) adders and 41(38+3) shifters. For verification, a TSMC 0.18-μm process is applied to implement this chip, and the maximum operating frequency of the proposed design is 133.3 MHz with the hardware cost of 19K gates.

    Contents 1 Introduction 1.1 Introduction to video compression standards 1.2 Motivation 1.3 Previous Work 1.3.1 Distributed Arithmetic 1.3.2 Factor Shared 1.3.3 CORDIC Based 1.4 Thesis Organizations 2 Proposed Factor Shared Architecture for Multi-standard 2.1 Inverse Transform Algorithm 2.2 Decomposition of Inverse transform 2.3 Mathematic Derivation of Factor Sharing 2.4 Proposed Factor Shared Architecture 2.4.1 Block Diagram of The Proposed Transform Core 2.4.2 Proposed buffer Circuit 2.4.3 Proposed transform Circuit 2.4.4 Proposed wrapper Circuit 3 Simulation Result and Comparison 3.1 Simulation Result 3.2 Specification 3.3 Comparison 4 Conclusion and Future Work 4.1 Conclusion 4.2 Future Work Bibliography

    [1] Moving Picture Experts Group Web site, http://mpeg.chiariglione.org/index.html.
    [2] International Telecommunication Union Telecommunication Standardization Sector Web site, http://www.itu.int/ITU-T.
    [3] Official Windows Media Web site, http://www.microsoft.com/windows/windows
    media/default.asp.
    [4] Video Compression standards Web site, http://en.wikipedia.org/wiki/Video compression.
    [5] S. Srinivasan, P. Hsu, T. Holcomb, K. Mukerjee, S. L. Regunathan, B. Lin, J. Liang, M. C. Lee, J. Ribas-Corbera,” Windows Media Video 9: overview and applications ,” in Proc. Original Research Article Signal Processing: Image Communication, Volume 19, Issue 9, pp. 851-875 October 2004.
    [6] G. J. Sullivan, J. R. Ohm, W. J. Han and T. Wiegand “Overview of the High Efficiency Video Coding (HEVC) Standard, ” Circuits and Systems for Video Technology, IEEE Transactions, pp.1649-1668,2012.
    [7] S. A. White, "Applications of distributed arithmetic to digital processing: A tutorial review," IEEE ASSP Mag., pp. 4-19. July 1989.
    [8] S. Yu and E. E. S. Jr., “DCT Implementation with Distributed Arithmetic,” IEEE Trans.
    Computers (TC), vol. 50, no. 9, pp. 985-991, September 2001.
    [9]C. Chen, T. S. Chang and C. W. Jen, “The IDCT processor on the adder-based distributed arithmetic,” in Proc. IEEE VLSI Circuit, pp. 36-37, 1996.
    [10] A. M. Shame, A. Chidanandan, W. Pan, and M. A. Bayoumi, “NEDA: A Low-Power
    High-Performance DCT Architecture,” in Proc. IEEE Trans. Signal Processing (TSP), vol. 54, no. 3, pp. 955-964, March 2006.
    [11] M. R. M. Rizk and M. Ammar, “Low Power Small Area High Performance 2D-DCT
    architecture, ” in Proc. IEEE International on Design and Test Workshop (IDT), pp. 120-125, 2007.
    [12] C. Y. Huang, L. F. Chen, and Y. K Lai, “A High-Speed 2-D Transform Architecture with Unique Kernel for Multi-Standard Video Applications,” in Proc. IEEE International Symposium on Circuits and Systems (ISCAS), pp. 21-24, 2008.
    [13] H. Chang, S. Kim, S. Lee, and K. Cho, “Design of Area-Efficient Unified Transform Circuit for Multi-standard Video Decoder,” in Proc. IEEE International SoC Design Conference (ISOC), pp. 369-372,2009.
    [14] H. Qi, Q. Huang, and W. Gao, “A Low-Cost Very Large Scale Integration Architecture For
    Multi-standard Inverse Transform,” in Proc. IEEE Trans. Circuits and Systems II (TCSII), Express Briefs, vol. 57, no. 7, pp. 551-555, July 2010.
    [15] J. Volder, “The CORDIC trigonometric computing technique,” in Proc. IRETrans. Electron. Computat , vol. EC-8, pp. 330–334, 1959.
    [16] J. Walther, “A unified algorithm for elementary functions,” in Proc. Spring Joint Comput. Conf, vol. 38, pp. 379–385,1971.
    [17] C.C. Sun, P. Donner and J. G¨otze, “Low-Complexity Multi-Purpose IP Core for Quantized Discrete Cosine and Integer Transform,” in Proc. IEEE International Symposium on Circuits and Systems (ISCAS), pp. 3014 – 3017, 2009.
    [18] C.C. Sun, Ce Zhang, J.Goetze, “ A configurable IP core for inverse quantized discrete cosine and integer transforms with arbitrary accuracy,” in Proc. IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), pp.915 – 918, 2010.
    [19] IEEE Std.,” in Proc. IEEE Standard Specifications for the Implementations of 8x8 Inverse Discrete Cosines Transform,” pp.1180-1990, Dec.1990
    [20] Information technology-Advanced coding of audio and video –part2: Video
    [21] S. Lee and K. Cho, “Design of transform and quantization circuit for multi-standard integrated video decoder,” in Proc. IEEE Workshop Signal Processing Systems, pp. 181–186, Oct. 2007.
    [22] M. Martuza , “A fast hybrid DCT architecture supporting H.264, VC-1, MPEG-2,AVS and JPEG codecs,” in Proc. IEEE Information Science, Signal Processing and their Applications (ISSPA), 2012, pp. 545-549.
    [23] K. Wahid M. Martuza, M. Das, C. McCrosky, “Resource shared architecture of multiple
    transforms for multiple video codecs,” in Proc. IEEE Canadian Conference on Electrical and Computer Engineering (CCECE),pp. 947-950, 2011.
    [24] G. Liu “An area-efficient IDCT architecture for multiple video standards,” in Proc. Information Science and Engineering (ICISE) 2nd International Conference, pp.3518-3522, 2010.
    [25] M. Martuza and K.Wahid, “A Cost Effective Implementation Of 8x8 Transform of HEVC From H.264/AVC,” in Proc. IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), pp. 1-4, May 2012.
    [26] S. Lee and K. Cho, “Circuit Implementation for Transform and Quantization Operation of
    H.264/MPEG-4/VC-1 Video Decoder,” in Proc. IEEE Design &Technology of Integrated Systems (DTIS), pp. 102-107, 2007.
    [27] S. Kim, H. Chang, S Lee, and K Cho, “VLSI Design to Unify IDCT and IQ Circuit for Multi-standard Video Decoder,” in Proc. Integrated Circuits, ISIC '09. Proceedings of the 2009 12th International Symposium, pp.14-16, 2009.
    [28] S. Lee and K. Cho, “Architecture of Transform Circuit for Video Decoder Supporting Multiple
    Standards,” IEEE Institution of Engineering and Technology (IET), vol. 44, no.4, pp. 274-275,
    February 2008.
    [29] Y. M. Lee, ” Fast Intermode Decision in H.264/AVC,” National Central University
    Department of Communication Engineering Thesis, July 2006.
    [30] C. P. Fan and G. A. Su, “Fast Algorithm and Low-Cost Hardware-Sharing Design of Multiple
    Integer Transforms for VC-1,” IEEE Trans. Circuits and Systems II (TCSII), Express Briefs, vol. 56, no. 10, pp. 788-792, October 2009.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE