研究生: |
陳映竹 Chen Ying-Chu |
---|---|
論文名稱: |
以介電泳方式操控在微流道環境下生成包裹細胞之微液珠 Manipulation Cell-Containing Droplets using Dielectrophoresis(DEP) |
指導教授: | 陳致真 |
口試委員: |
陳景欣
鄭兆珉 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 94 |
中文關鍵詞: | 微流道 、液珠 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
微液珠技術可將細胞或生化物質包裹於奈升至皮升的微液珠中,並可以進行操控及觀察。此技術之應用包括以細胞為模型之藥物檢測、毒性檢測,各種生化物質之反應以及可用來做細胞培養。
生成微液珠的微流道孔徑為微米等級,因此所需之藥劑量與試劑量相對於傳統技術減少許多,同樣容量利用微液珠可增加至少十萬倍(從微升至奈升及皮升)的檢體及實驗。
於目前研究分離包裹細胞微液珠的文獻中,大部分是以類似迴授的方式,先檢測在選擇所要分離的微液珠,或者直接將生成出的微液珠分成兩類,篩選去除不需要的微液珠,簡而言之,不論是哪一種方式,每次都只能取得一種形式的微液珠。
因此本論文提供一種新的想法,以介電泳力的方式,液珠中包裹細胞的數目不同,因此極化的程度不同時所需之介電泳力也不相同,希望利用此不同,能達到將相同包裹細胞數目的微液珠分離到同一個子流道,利用介電泳力之方式,每個包裹不同數量細胞微液珠就會往不同的方向分離至不同的子流道。
在本論文,我們成功的移動有裹細胞之液珠,並在未來會將電極之設計優化,將空液珠與有包裹細胞之液珠之差別突顯出來,希望能成功將液珠分離至不同的子流道。
[1] G. M. Whitesides, "The origins and the future of microfluidics," Nature, vol. 442, pp. 368-373, Jul 27 2006.
[2] G. Yang and S. G. Withers, "Ultrahigh-throughput FACS-based screening for directed enzyme evolution," Chembiochem, vol. 10, pp. 2704-15, Nov 23 2009.
[3] J. Nam, H. Lim, C. Kim, J. Y. Kang, and S. Shin, "Density-dependent separation of encapsulated cells in a microfluidic channel by using a standing surface acoustic wave," Biomicrofluidics, vol. 6, Jun 2012.
[4] Z. N. Cao, F. Y. Chen, N. Bao, H. C. He, P. S. Xu, S. Jana, et al., "Droplet sorting based on the number of encapsulated particles using a solenoid valve," Lab on a Chip, vol. 13, pp. 171-178, 2013.
[5] A. B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, C. Abell, F. Hollfelder, et al., "Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology," Angew Chem Int Ed Engl, vol. 49, pp. 5846-68, Aug 9 2010.
[6] C. M. Ho and Y. C. Tai, "Micro-electro-mechanical-systems (MEMS) and fluid flows," Annual Review of Fluid Mechanics, vol. 30, pp. 579-612, 1998.
[7] R. Daw and J. Finkelstein, "Lab on a chip," Nature, vol. 442, pp. 367-367, Jul 27 2006.
[8] A. Manz, N. Graber, and H. M. Widmer, "Miniaturized Total Chemical-Analysis Systems - a Novel Concept for Chemical Sensing," Sensors and Actuators B-Chemical, vol. 1, pp. 244-248, Jan 1990.
[9] S. Haeberle and R. Zengerle, "Microfluidic platforms for lab-on-a-chip applications," Lab on a Chip, vol. 7, pp. 1094-1110, 2007.
[10] S. L. Anna, N. Bontoux, and H. A. Stone, "Formation of dispersions using “flow focusing” in microchannels," Applied Physics Letters, vol. 82, p. 364, 2003.
[11] T. Ward, M. Faivre, M. Abkarian, and H. A. Stone, "Microfluidic flow focusing: drop size and scaling in pressure versus flow-rate-driven pumping," Electrophoresis, vol. 26, pp. 3716-24, Oct 2005.
[12] T. Thorsen, R. W. Roberts, F. H. Arnold, and S. R. Quake, "Dynamic pattern formation in a vesicle-generating microfluidic device," Physical Review Letters, vol. 86, pp. 4163-4166, Apr 30 2001.
[13] P. Garstecki, M. J. Fuerstman, H. A. Stone, and G. M. Whitesides, "Formation of droplets and bubbles in a microfluidic T-junction - scaling and mechanism of break-up," Lab on a Chip, vol. 6, pp. 437-446, Mar 2006.
[14] J. Ratulowski and H. C. Chang, "Marangoni Effects of Trace Impurities on the Motion of Long Gas-Bubbles in Capillaries," Journal of Fluid Mechanics, vol. 210, pp. 303-328, Jan 1990.
[15] J. Lederberg, "A Simple Method for Isolating Individual Microbes," Journal of Bacteriology, vol. 68, pp. 258-259, 1954.
[16] J. F. Edd, D. Di Carlo, K. J. Humphry, S. Koster, D. Irimia, D. A. Weitz, et al., "Controlled encapsulation of single-cells into monodisperse picolitre drops," Lab Chip, vol. 8, pp. 1262-4, Aug 2008.
[17] Y. C. Tan, J. S. Fisher, A. I. Lee, V. Cristini, and A. P. Lee, "Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting," Lab on a Chip, vol. 4, pp. 292-298, 2004.
[18] Y.-C. Tan, Y. L. Ho, and A. P. Lee, "Microfluidic sorting of droplets by size," Microfluidics and Nanofluidics, vol. 4, pp. 343-348, 2007.
[19] C. N. Baroud, J. P. Delville, F. Gallaire, and R. Wunenburger, "Thermocapillary valve for droplet production and sorting," Physical Review E, vol. 75, Apr 2007.
[20] M. L. Cordero, D. R. Burnham, C. N. Baroud, and D. McGloin, "Thermocapillary manipulation of droplets using holographic beam shaping: Microfluidic pin ball," Applied Physics Letters, vol. 93, Jul 21 2008.
[21] J. R. Kovac and J. Voldman, "Intuitive, image-based cell sorting using optofluidic cell sorting," Analytical Chemistry, vol. 79, pp. 9321-9330, Dec 15 2007.
[22] J. R. Dorvee, A. M. Derfus, S. N. Bhatia, and M. J. Sailor, "Manipulation of liquid droplets using amphiphilic, magnetic one-dimensional photonic crystal chaperones," Nature Materials, vol. 3, pp. 896-899, Dec 2004.
[23] K. Zhang, Q. L. Liang, S. Ma, X. A. Mu, P. Hu, Y. M. Wang, et al., "On-chip manipulation of continuous picoliter-volume superparamagnetic droplets using a magnetic force," Lab on a Chip, vol. 9, pp. 2992-2999, 2009.
[24] K. Ahn, C. Kerbage, T. P. Hunt, R. M. Westervelt, D. R. Link, and D. A. Weitz, "Dielectrophoretic manipulation of drops for high-speed microfluidic sorting devices," Applied Physics Letters, vol. 88, p. 024104, 2006.
[25] A. Gorg, C. Obermaier, G. Boguth, A. Harder, B. Scheibe, R. Wildgruber, et al., "The current state of two-dimensional electrophoresis with immobilized pH gradients," Electrophoresis, vol. 21, pp. 1037-53, Apr 2000.
[26] H. A. Pohl, "Dielectrophoresis the behavior of neutral matter in nonuniform electric fields," Cambridge University Press, Cambridge, New York 1978.
[27] R. Pethig and G. H. Markx, "Applications of dielectrophoresis in biotechnology," Trends Biotechnol, vol. 15, pp. 426-32, Oct 1997.
[28] P. R. Gascoyne and J. Vykoukal, "Particle separation by dielectrophoresis," Electrophoresis, vol. 23, pp. 1973-83, Jul 2002.
[29] C. L. Asbury, A. H. Diercks, and G. van den Engh, "Trapping of DNA by dielectrophoresis," Electrophoresis, vol. 23, pp. 2658-2666, Aug 2002.
[30] J. S. Muenter, "Electric Dipole Moment of Carbonyl Sulfide," Journal of Chemical Physics, vol. 48, pp. 4544-&, 1968.
[31] T. B. Jones, " Electromechanics of Particles," Cambridge University Press, Cambridge, New York 1995.
[32] J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. K. Wu, O. J. A. Schueller, et al., "Fabrication of microfluidic systems in poly(dimethylsiloxane)," Electrophoresis, vol. 21, pp. 27-40, Jan 2000.
[33] Z. Wu, N. Xanthopoulos, F. Reymond, J. S. Rossier, and H. H. Girault, "Polymer microchips bonded by O2-plasma activation," Electrophoresis, vol. 23, pp. 782-90, Mar 2002.
[34] J. C. Baret, "Surfactants in droplet-based microfluidics," Lab Chip, vol. 12, pp. 422-33, Feb 7 2012.
[35] C. Holtze, A. C. Rowat, J. J. Agresti, J. B. Hutchison, F. E. Angile, C. H. Schmitz, et al., "Biocompatible surfactants for water-in-fluorocarbon emulsions," Lab Chip, vol. 8, pp. 1632-9, Oct 2008.
[36] T. F. Tadros, "T. F. Tadros, Applied Surfactants - Principles and Applications," 2005. DOI: 10.1002/3527604812
[37] M. Chabert, K. D. Dorfman, P. de Cremoux, J. Roeraade, and J. L. Viovy, "Automated microdroplet platform for sample manipulation and polymerase chain reaction," Anal Chem, vol. 78, pp. 7722-8, Nov 15 2006.
[38] K. D. Dorfman, M. Chabert, J. H. Codarbox, G. Rousseau, P. de Cremoux, and J. L. Viovy, "Contamination free continuous flow microfluidic polymerase chain reaction for quantitative and clinical applications," Analytical Chemistry, vol. 77, pp. 3700-3704, Jun 1 2005.
[39] E. F. Treo and C. J. Felice, "Non-linear dielectric spectroscopy of microbiological suspensions," Biomed Eng Online, vol. 8, p. 19, 2009.
[40] T. P. I. Hunt, David; Lee, Hakho; Westervelt, Robert M.; Brown, Keith Andrew, "Integrated Circuit / Microfluidic Chips for Dielectric Manipulation," Harvard University Cambridge, 2007.
[41] A. S. Bahaj and A. G. Bailey, "Dielectrophoresis of Microscopic Particles," Journal of Physics D-Applied Physics, vol. 12, pp. L109-L112, 1979.