研究生: |
曾怡綺 Tseng, Yi-Chi |
---|---|
論文名稱: |
分析高基氏染色特性應用X-射線造影 Characterization of Golgi stain for X-ray imaging |
指導教授: |
江安世
Chiang, Ann-Shyn |
口試委員: |
朱士維
Chu, Shi-Wei 林彥穎 Lin, Yen-Yin |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物科技研究所 Biotechnology |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 30 |
中文關鍵詞: | 高基氏染色優化 、X-射線造影 、腦神經網路圖譜 、澄清技術 |
外文關鍵詞: | Golgi stain optimal, X-ray imaging, Connectome, Clarity |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著顯微影像技術的突破,我們可以取得腦內神經元之間在不同的尺度下連結圖譜。神經科學家想達成的目標是了解在神經細胞中,訊號傳遞、儲存及提取的連續處理過程,第一步則是腦神經網路體建構,一個三維的腦神經網路圖譜,詳細記錄生物體的腦神經網路在結構及功能上如何連結。我們實驗室預計結合同步輻射光源及高基氏染色方法完成的全腦圖譜。我們利用了高基氏染色特性,在X-射線造影技術成熟之前,藉由減少實際染上的神經數目,達到單一神經的解析度。高基氏-卡氏染色法雖然省時,染上的神經形態卻不完整且有非預期的沉澱產生。因此為了改善高基氏-卡氏染色法品質,我們根據實驗所得的固定溫度、浸泡長度、固定緩衝液、添加劑建立一套新的染色流程,達到改善染色品質的目的。為了加速樣品製備的優化,我們採用在光學顯微鏡下利用組織澄清技術,達到初步的篩選,避免傳統包埋在塑膠的繁複過程。由同步輻射光源搭配金屬染色方法的技術進行全腦重建圖譜的技術漸趨成熟,本研究提供了高基氏染色方法優化的方向及組織澄清光學成像的快速篩選。
With the breakthrough in microscopy, we can obtain the neuron connection in the brain at either macroscale or microscale. The goal of neuroscientists is to understand how the propagation, storage, and acquisition of information are accomplished in the billions of nerve cells. First, we need to establish the wiring diagram of the brain, a three-dimensional brain mapping, the neuronal connection based on the structure and the function of nerve cells. In our lab, we will provide a synchrotron X-ray based whole-head mapping with Golgi stained specimen. The Golgi-Cox method provides a fast staining process but incomplete stained neurons as well. For the improvement of the staining quality, we establish a new protocol based on optimal experimental temperature, incubation time, fixation condition and additive. To speed the optimization of Golgi method, we decided to primarily image samples through optical microscopy with clearing agent, thioglycerol. Synchrotron X-ray based brain mapping with metallic stain technique has drawn the attention of neuroscientists. The present study introduced the potential orientations of Golgi method optimization and fast approach to screen out by clearing tissue.
1. O. Sporns, G. Tononi, R. Kötter, The human connectome: A structural description of the human brain. PLOS Computational Biology 1, e42 (2005).
2. D. Kim, Steps towards the connectome: interrogation of brain function and connectivity using high-field magnetic resonance imaging. Neuroscience Research 68, e15 (2010).
3. S. Shibata et al., Connectomics: comprehensive approaches for whole-brain mapping. Microscopy 64, 57-67 (2015).
4. R. Gala, J. Chapeton, J. Jitesh, C. Bhavsar, A. Stepanyants, Active learning of neuron morphology for accurate automated tracing of neurites. Frontiers in Neuroanatomy 8, 37 (2014).
5. W. A. Press, B. A. Olshausen, D. C. Van Essen, A graphical anatomical database of neural connectivity. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 356, 1147-1157 (2001).
6. J. L. Lanciego, F. G. Wouterlood, E. Erro, J. M. Gimenez-Amaya, Multiple axonal tracing: simultaneous detection of three tracers in the same section. Histochemistry and Cell Biology 110, 509-515 (1998).
7. S. Takemura, Connectome of the fly visual circuitry. Microscopy 64, 37-44 (2015).
8. W. K. Jeong et al., Scalable and Interactive Segmentation and Visualization of Neural Processes in EM Datasets. IEEE Trans Vis Comput Graph. 15, 1505-1514 (2009).
9. R. S. Lasher et al., The taste bud connectome: First results from scanning blockface EM. Chemical Senses 40, 538-539 (2015).
10. I. A. Meinertzhagen, Connectome studies on Drosophila: a short perspective on a tiny brain. Journal of Neurogenetics 30, 62-68 (2016).
11. T. Lehmann, M. Hess, G. Wanner, R. R. Melzer, Dissecting a neuron network: FIB-SEM-based 3D-reconstruction of the visual neuropils in the sea spider Achelia langi (Dohrn, 1881) (Pycnogonida). BMC Biology 12, 59 (2014).
12. L. Anton-Sanchez et al., Three-dimensional distribution of cortical synapses: a replicated point pattern-based analysis. Frontiers in Neuroanatomy 8, 85 (2014).
13. M. Lakadamyali, High resolution imaging of neuronal connectivity. Journal of Microscopy 248, 111-116 (2012).
14. C. Yook, S. Druckmann, J. Kim, Mapping mammalian synaptic connectivity. Cellular and Molecular Life Sciences 70, 4747-4757 (2013).
15. A. S. Chiang et al., Three-dimensional reconstruction of brain-wide wiring networks in drosophila at single-cell resolution. Current Biology 21, 1-11 (2011).
16. G. C., Sulla structtura della sostanza grigia della ervello. Gaz Med Lamb, 33244-33246 (1873).
17. R. y. C. R., Histologie du System Nerveux de I'Homme et des
Veertebres. Madrid: Instituto Ramon y Cajal, , 774-838 (1909).
18. G.-L. P. Garcia-Marin V, Freire M. , Cajal's contributions to glia research. Trends Neurosci 30, 479-487 ( 2007).
19. H. Mizutani et al., in 10th International Conference on X-Ray Microscopy, I. McNulty, C. Eyberger, B. Lai, Eds. (2011), vol. 1365, pp. 399-402.
20. H. Mizutani, Y. Takeda, A. Momose, A. Takeuchi, T. Takagi, in 9th International Conference on X-Ray Microscopy, C. David, F. Nolting, C. Quitmann, M. Stampanoni, F. Pfeiffer, Eds. (2009), vol. 186.
21. R. Mizutani et al., in 10th International Conference on X-Ray Microscopy, I. McNulty, C. Eyberger, B. Lai, Eds. (2011), vol. 1365, pp. 403-406.
22. R. Mizutani et al., Microtomographic analysis of neuronal circuits of human brain. Cerebral Cortex 20, 1739-1748 (2010).
23. Neuroanatomical Techniques: Insect Nervous System. (Sprinder-Verlag New York Inc., 1980), pp. 77-97.
24. R. Mizutani, R. Saiga, A. Takeuchi, K. Uesugi, Y. Suzuki, Three-dimensional network of Drosophila brain hemisphere. Journal of Structural Biology 184, 271-279 (2013).
25. R. R. Smitha JSM, Rapid Golgi technique for staining pyramidal neurons in rat hippocampus. International Journal of Basic and Applied Medical Sciences 2, 98-102 (2012).
26. K. K. Patro N, Patro I., Quick Golgi method: modified for high clarity and better neuronal anatomy. Indian J Exp Biol. 51, 685-693 (2013).
27. G. B. Rosoklija et al., Reliable and durable Golgi staining of brain tissue from human autopsies and experimental animals. J Neurosci Methods 230, 20-29 (2014).
28. A. Ranjan, B. N. Mallick, Differential staining of glia and neurons by modified Golgi-Cox method. Journal of Neuroscience Methods 209, 269-279 (2012).
29. S. Gull, I. Ingrisch, S. Tausch, O. W. Witte, S. Schmidt, Consistent and reproducible staining of glia by a modified Golgi–Cox method. Journal of Neuroscience Methods 256, 141-150 (2015).
30. Zubeyde Bayram-Weston, Elliott Olsen, David J. Harrison, Stephen B. Dunnett, Simon P. Brooks, Optimising Golgi–Cox staining for use with perfusion-fixed brain tissue validated in the zQ175 mouse model of Huntington's disease. Journal of Neuroscience Methods 265, 81-88 (2016).
31. C. W., Impregnation des centralen Nervensystems mit Quecksilber. salzen. Arch Mikr Anat 3716-3721 (1891).
32. S. Zaqout, A. M. Kaindl, Golgi-Cox staining step by step. Frontiers in Neuroanatomy 10, 38 (2016).
33. S. M. Farris, A. I. Abrams, N. J. Strausfeld, Development and morphology of class II Kenyon cells in the mushroom bodies of the honey bee, Apis mellifera. Journal of Comparative Neurology 474, 325-339 (2004).
34. S. M. Farris, N. J. Strausfeld, Development of laminar organization in the mushroom bodies of the cockroach: Kenyon cell proliferation, outgrowth, and maturation. Journal of Comparative Neurology 439, 331-351 (2001).
35. S. E. Dobrin, J. D. Herlihy, G. E. Robinson, S. E. Fahrbach, Muscarinic regulation of Kenyon cell dendritic arborizations in adult worker honey bees. Arthropod Structure & Development 40, 409-419 (2011).
36. in Cold Spring Harbor Protocols. (2010), vol. 2010, pp. pdb.rec12291.
37. in Cold Spring Harbor Protocols. (2015), vol. 2015, pp. pdb.rec087775.
38. Y. F. Song et al., X-ray beamlines for structural studies at the NSRRC superconducting wavelength shifter. J. Synchrotron Radiat. 14, 320-325 (2007).
39. G. Gundappa, T. Desiraju, Deviations in brain development of F2 generation on caloric undernutrition and scope of their prevention by rehabilitation: alterations in dendritic spine production and pruning of pyramidal neurons of lower laminae of motor cortex and visual cortex. Brain Research 456, 205-223 (1988).
40. R. Salema, Brandao, I., The use of PIPES buffer in the fixation of plant cells for electron microscopy. J. submicr. Cytol. 5, 315-327 (1973).
41. P. S. Baur, T. R. Stacey, The use of PIPES buffer in the fixation of mammalian and marine tissues for electron microscopy. Journal of Microscopy 109, 315-327 (1977).
42. T. P. Pessacq, Chloral hydrate modification of Golgi-Cox method for impregnation of glia cells. Acta Anatomica 76, 131-135 (1970).
43. I. N. S. a. F. M. F. Ramanakoppa H. Nagaraj, Protein cross-linking by the maillard reaction
isolation, characterization, and in vivo detection of a lysine-lysine cross-link derived from methylglyoxal. J. B. C. 271, 19338-19345 (1996).
44. A. K. Kazuki Tainaka, Shimpei I. Kubota,Tatzya Murakami, and Hiroki R. Ueda, Chemical Principles in Tissue Clearing and Staining Protocols for Whole-Body Cell Profiling. Annu. Rev. Cell Dev. Biol. 32, 713-741 (2016).
45. G. M. Shepherd, C. A. Greer, P. Mazzarello, M. Sassoe-Pognetto, The first images of nerve cells: Golgi on the olfactory bulb 1875. Brain Research Reviews 66, 92-105 (2011).
46. S. Fregerslev, T. W. Blackstad, K. Fredens, M. J. Holm, Golgi potassium-dichromate silver-nitrate impregnation-nature of precipitate studied by X-ray powder diffraction methods. Histochemie 25, 63-71 (1971).
47. T. W. Blackstad, S. Fregerslev, S. Laurberg, K. Rokkedal, Golgi impregnation with potassium dichromate and mercurous or mercuric nitrate - identification of precipitate by X-ray and electron-diffraction methods. Histochemie 36, 247-268 (1973).
48. H. Zhang, S. J. Weng, J. J. Hutsler, Does microwaving enhance the Golgi methods? A quantitative analysis of disparate staining patterns in the cerebral cortex. Journal of Neuroscience Methods 124, 145-155 (2003).
49. G. Rosoklija et al., Optimization of Golgi methods for impregnation of brain tissue from humans and monkeys. Journal of Neuroscience Methods 131, 1-7 (2003).
50. J. P. B. Stean, Some evidence of the nature of the Golgi-Cox deposit and its biochemical origin. Histochemistry 40, 377-383 (1974).
51. D. G., Autometallography. A new technique for light and electron microscopic visualization of metals in biological tissues (gold, silver, metal sulphides and metal selenides). histochemistry 81, 331-335 (1984).
52. B. C. Orlowski D, Autometallographic enhancement of the Golgi-Cox staining enables high resolution visualization of dendrites and spines. Histochem. Cell Biol. 132, 369-374 (2009).
53. E. P. SAMU, Gold toning Stain technology 28, 225-229 (1953).