研究生: |
林漢廷 Lin, Han-Ting |
---|---|
論文名稱: |
探討去合金化效應對鉑修飾之鎳錫鈀多尺度觸媒於鹼性環境中氧氣還原反應之影響 Oxygen reduction reaction properties of electrochemically dealloyed hierarchical structured Pt-clusters decorated Ni/SnOx/Pd in alkaline media |
指導教授: |
陳燦耀
Chen, Tsan-Yao 林滄浪 Lin, Tsang-Lang |
口試委員: |
王冠文
Wang, Kuan-Wen 陳馨怡 Chen, Hsin-Yi |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 88 |
中文關鍵詞: | 去合金化 、觸媒 、氧氣還原反應 、燃料電池 、鹼性環境 、鉑 |
外文關鍵詞: | dealloying, catalyst, oxygen reduction reaction, fuel cell, alkaline media, Pt |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於現今全球能源消耗與日俱增,全球皆致力於尋找新的替代能源,而燃料電池以其低汙染、高效率、便利性等特點成為眾多再生能源中發展的趨勢,但由於陰極氧氣還原觸媒材料的鉑的成本以及反應能障的問題,使得燃料電池依舊無法商業化發展,因此改善觸媒成本並使氧還原活性的提升成為現今研究的主要方向。
本研究利用濕式化學法合成多元金屬(鎳、錫、鈀)多尺度結構觸媒,並利用不同當量貴金屬(鉑)的修飾於觸媒表面,再探究其在鹼性環境中氧氣還原催化活性受去合金化製程處理之影響。利用X光繞射光譜(XRD),X光吸收光譜(XAS),高解析電子顯微境(TEM)等儀器分析觸媒結構,並由電化學循環伏安法與一氧化碳剝除法確認合金化處理能改變表面組成,使活性上升。相較商用白金觸媒(J.M.Pt/C),經過去合金化後含有白金成分(~1.0 wt% Pt)之鎳錫鈀鉑四元觸媒(命名為NiSnPdPt0025)之質量活性(Mass Activity, MA)最高可提升約67倍。顯見該處理對含有氧化物之觸媒在氧氣還原催化效果極佳。改變修飾鉑濃度則可有效抑制表面氧化,且隨著鉑含量的提升,觸媒之奈微結構與表面形貌也會因為賈凡尼置換效應(galvanic replacement)程度增加而改變。本研究所設計之四元奈米觸媒可顯著降低氧還原反應材料之鉑金屬用量,樣品中的氧化問題可藉由些微增加白金或是電化學去合金處理改善,下一步重點在如何有效改善材料之反應耐久性,可能的做法為調整金屬還原程序、成長過程的還原劑用量比、以及表面還原反應改質處理等方法。
Due to the increasing global energy consumption, the world is devoted to finding new alternative energy, and fuel cells with its low pollution, high efficiency, convenience has become a trend in much renewable energy development, but the inherent characteristics of Pt such as its high primitive cost and reaction barrier height make it unfit for commercial application, in this context, searching for highly active and low-cost nanocatalysts (NCs) for the oxygen reduction reaction (ORR) is a crucial endeavor.
In this study, quaternary metallic NCs consisting of the Ni, Sn, Pd hierarchical structure are synthesized by the wet chemical reduction method with different Pt contents (0025~03 mole ratio, namely NSPP) , further explore the influence of its oxygen reduction catalytic activity in alkaline environment (0.1M KOH) by dealloying process treatment, the catalyst structure is analyzed by instruments such as X-ray diffraction (XRD), X-ray absorption spectra (XAS), high-resolution electron microscopy (HRTEM). Through analysis of cyclic voltammetry (CV) and carbon monoxide stripping results, we demonstrated that enhanced ORR activities for the dealloying process, resulting in changed surface composition on the NCs. Compared to commercial platinum catalysts (J.M.Pt/C), the mass activity of NiSnPdPt0025 with platinum composition (-1.0 wt% Pt) after dealloying can be increased by up to 67 times. It is shown that the treatment has excellent catalyzing effect on oxygen reduced the catalyst containing oxides. Changing the concentration of modified platinum can effectively inhibit surface from oxidation, and as the platinum content increases, the catalyst's microstructure and surface morphology will also be changed due to the increase in the degree of galvanic replacement effect. The institute designed the four-metal nano-catalyst (NCs) can significantly reduce the amount of platinum metal oxygen reduction reaction material, the oxidation problem in the sample can be optimized by increasing some platinum or through the electrochemical de-alloy treatment, the next topic is focus on how to effectively improve the durability of the material reaction, possibly the practice is to adjust the metal reduction procedure, loading of reducing agent during growth, as well as surface reduction reaction modification treatment methods.
1. https://ourfiniteworld.com/2012/03/12/world-energy-consumption-since-1820-in-charts/
2. http://www.jobsinfuelcells.com/fctypes.htm
3. https://vimeo.com/channels/1192944/247790733
4. Wu, Mingjie & Zhang, Gaixia & Wu, Minghao & Prakash, Jai & Sun, Shuhui. (2019).. 10.1016/j.ensm.2019.05.018.
5. Hammer B, JK Norskov. Nature 376: 238-240. 1995.
6. https://sites.google.com/site/orrcatalysiswithptbasedcsnps/home/d-band-theory
7. Oliver T. Holton, Joseph W. Stevenson Johnson Matthey, Platinum Metals Rev., 2013, 57, (4), 259–271
8. K. S. Lyons, M. Teliska, W. Baker and J. Pietron, “Low-Platinum Catalysts for Oxygen Reduction at PEMFC Cathodes”, DOE Hydrogen Program, US Department of Energy, Washington, DC, USA, 2005, pp. 823–827
9. J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard and H. Jónsson, J. Phys. Chem. B, 2004, 108, (46), 17886
10. E. Bardal, “Corrosion and Protection”, Engineering Materials and Processes, Springer-Verlag, London, UK, 2004
11. M. Pourbaix, “Lectures on Electrochemical Corrosion”, Plenum Press, New York, USA, 1973
12. Z. W. She, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Nørskov and T. F. Jaramillo, Science, 2017 .355
13. Wang F, Yu H, Feng T, Zhao D, Piao J and Lei J (2020) Surface Roughed and Pt-Rich Bimetallic Electrocatalysts for Hydrogen Evolution Reaction. Front. Chem. 8:422. doi: 10.3389/fchem.2020.00422
14. Gunji, T., Noh, S. H., Ando, F., Tanabe, T., Han, B., Ohsaka, T., & Matsumoto, F. (2018). Journal of Materials Chemistry A, 6(30), 14828-14837.
15. F. H. Lai, W. N. Su, L. S. Sarma, D. G. Liu, C. A. Hsieh, J. F. Lee, and B. J. Hwang, Chem.-Eur. J. 16, 4602 (2010).
16. Shao M, Peles A, Shoemaker K. Electrocatalysis on platinum nanoparticles: particle size effect on oxygen reduction reaction activity. Nano Lett. 2011;11(9):3714‐3719.
17. A. Buasri, B. Ksapabutr, M. Panapoy and N. Chaiyut Adv Sci Lett, 19 (12) (2013), pp. 3473-3476
18. Y. Takasu, K. Kawaguchi, W. Sugimoto and Y. Murakami Sci Rep, 48 (25) (2003), pp. 3861-3868
19. J.A.S. Bett, K. Kinoshita and P. Stonehart J Catal, 41 (1) (1976), pp. 124-133
20. Science 21 Mar 2014: Vol. 343, Issue 6177, pp. 1339-1343
DOI: 10.1126/science.1249061
21. Jiang, Kun & Zhang, Hanxuan & Zou, Shouzhong & Cai, Wen-Bin. (2014). Physical chemistry chemical physics : PCCP. 16. 10.1039/c4cp03151b.
22. Y. Gauthier , M. Schmid , S. Padovani , E. Lundgren , V. Bus , G. Kresse , J. Redinger and P. Varga , Phys. Rev. Lett., 2001, 87 , 036103
23. P. Liu and J. K. Nørskov , Phys. Chem. Chem. Phys., 2001, 3 , 3814 —3818
24. L. A. Kibler , A. M. El-Aziz , R. Hoyer and D. M. Kolb , Angew. Chem., Int. Ed., 2005, 44 , 2080 —2084
25. S. Zhang , X. Zhang , G. Jiang , H. Zhu , S. Guo , D. Su , G. Lu and S. Sun , J. Am. Chem. Soc., 2014, 136 , 7734 —7739
26. Mun BS, Lee C, Stamenkovic V, Markovic NM, Ross PN. J Chem Phys 122: 184712. 2005.
27. Surface distortion as a unifying concept and descriptor in oxygen reduction reaction electrocatalysis, Nat. Mater., 2018,
28. Kim, Minho & Lee, Chungyeon & Ko, Sung & Nam, Jwa-Min. (2018). Journal of Solid State Chemistry. 270. 10.1016/j.jssc.2018.11.014.
29. Zhuang, Y., J.-P. Chou, P.-Y. Liu, T.-Y. Chen, J.-j. Kai, A. Hu and H.-Y. Tiffany Chen Dai, S., J.-P. Chou, K.-W. Wang, Y.-Y. Hsu, A. Hu, X. Pan and T.-Y. Chen (2019). Nat Commun 10, 440 (2019)
30. (2018). Journal of Materials Chemistry A 6(46): 23326-23335.
31. http://nscric.site.nthu.edu.tw/p/404-1186-122226.php?Lang=zh-tw
32. https://m.yao51.com/jiankangtuku/mghknhcv.html
33. https://xrdukm.wixsite.com/xrdcrim/xrd-information
34. https://link.springer.com/referenceworkentry/10.1007%2F978-3-540-72816-0_12847#howtocite
35. https://www.nsrrc.org.tw/Chinese/experiment.aspx#3
36. O. Ali1, R. Ahmed1, N. H. Faisal, Nayef M. Alanazi Influence of Post-treatment on the Microstructural and Tribomechanical Properties of Suspension Thermally Sprayed WC–12 wt%Co Nanocomposite Coatings
37. Nasir, Salisu & Hussein, Mohd & Zainal, Zulkarnain & Yusof, Nor & Zobir, Syazwan & ALIBE, IBRAHIM. (2018).. Bioresources. 14. 10.15376/biores.14.1.Nasir.
38. file:///C:/Users/caeser/Downloads/C10703281%20(1).pdfhttps://ywcmatsci.yale.edu/xps
39. G. Samjeske, S.-i. Nagamatsu, S. Takao, K. Nagasawa, Y. Imaizumi, O. Sekizawa, et al. Phys Chem Chem Phys, 15 (2013), pp. 17208-17218
40. https://en.wikipedia.org/wiki/X-ray_absorption_spectroscopy
41. https://www.wikiwand.com/en/X-ray_absorption_near_edge_structure
42. https://www.aimspress.com/article/10.3934/matersci.2017.4.856/figure.html
43. https://www.nsrrc.org.tw/Chinese/experiment.aspx#3
44. https://eag.com/zh-TW/resources/appnotes/icp-oes-and-icp-ms-detection-limit-guidance/
45. http://nscric.site.nthu.edu.tw/p/404-1186-122439.php?Lang=zh-tw
46. Mais, Laura. (2015). Electrodeposition of Nb, Ta, Zr and Cu from Ionic Liquid for Nanocomposites Preparation.
47. Fatma Saidani, Dominic Rochefort Carbon Monoxide Oxidation on Nanostructured Pt Thin Films Synthesized by Pulsed Laser Deposition: Insights into the Morphology Effects
48. N. Zhang, S. Zhang, C. Du, Z. Wang, Y. Shao, F. Kong, et al. Electrochim Acta, 117 (2014), pp. 413-419
49. S. Beyhan, J.-M. Léger, F. Kadırgan Appl Catal B, 144 (2014), pp. 66-74
50. B.J. Su, K.W. Wang, T.C. Cheng, C.J. Tseng Mater Chem Phys, 135 (2012), pp. 395-400