簡易檢索 / 詳目顯示

研究生: 張維哲
論文名稱: 多壁奈米碳管在兆赫頻段的介電函數之研究
Dielectrics responses of MWCNTs in Terahertz range
指導教授: 齊正中
Chi, Cheng-Chung
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 100
中文關鍵詞: 多壁奈米碳管兆赫波等效介質理論電光效應
外文關鍵詞: MWCNT, THz, effective medium theory, E-O sampling
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗利用飛秒雷射激發二階非線性晶體(ZnTe)產生兆赫波
    (THz wave),且利用電光取樣的方式取得 THz電場的時間分布,並
    使用不同入射角度(0 度、20 度、40 度)的兆赫波來穿透多壁奈米碳
    管得知偏振方向對於吸收程度的影響,再利用多重反射薄膜公式計算
    出奈米碳管的介電函數,得到多壁奈米碳管在0.2~2THz的頻譜特性。
    由本實驗的結果,多壁奈米碳管在兆赫頻段沒有特定頻率吸收,
    但兆赫波電場方向與多壁奈米碳管中心軸向越平行,則吸收越大。電
    導率不遵守 Drude model 且實部大於虛部,顯示多壁奈米碳管為金
    屬性。


    摘要中文、英文…………………………………………………….………..…i、ii 第一章 簡介 1.1 研究動機………………………………………….…….…….………….1 1.2 THz量測技術簡介…………………………………….………….….....1 1.3 奈米碳管簡介…………………………………….…….…….………….3 1.4 等效介質理論…………………………………….………….…….…….5 第二章 樣品介紹 2.1 奈米碳管介紹….….…..…………………………………………...…....6 2.2 樣品製備…………….…………………………………………...……..10 2.3 多壁奈米碳管的拉曼光譜…………………………...………...………11 第三章 實驗原理介紹 3.1 兆赫波產生機制………………………………………………..............18 3.2 兆赫波訊號擷取…………………………………………………...……24 3.3 非線性晶體的電光效應……………………………………………..….26 3.4 電光調制…………………………….……………………………….….32 3.5 薄膜理論…………………………………………………………………35 3.6 等效介質理論……………………………………………………………38 第四章 實驗系統與架設 4.1 雷射光源簡介……………………………………………………….…..62 4.2 時間解析激發探測技術與偵測……………………………….…….….64 4.3 自由空間中兆赫波訊號簡介…………………………………….....…..66 4.4 水氣對兆赫波的影響與排除…………………………….………….….67 第五章 實驗結果與討論 5.1 基板量測………………………………………………………………...77 5.2 實驗量測結果………………………………………………..………….79 第六章 結論…………………………………………………………………..…98 參考文獻…………….……………………………………..………………………99

    [1] G. Mourou et al., Appl. Phys. Lett., 39, 295 (1981)
    [2] C. Fattingerm, D. Grischkowsky, Appl. Phys. Lett., 53, 1480 (1988)
    [3] M. van Exter, C. Fattingerm, D. Grischkowsky, Appl. Phys. Lett., 55, 337
    (1989)
    [4] Rice A., Jin Y., Zhang X.C.,et al., Appl. Phys. Lett., 64,1324 (1994)
    [5] Zhang X.C.,and Auston,D.H., J. Appl. Phys.,71, 326 (1992)
    [6] X.C.Zhang, Y. Jin, T. D. Hewitt, and T. Sangsir, Appl. Phys. Lett., 62, 2003
    (1993)
    [7] N.Sarukura, H.Othtake, S.Izumida, and Z.Liu, J. Appl. phys., 84, 654 (1998)
    [8] X.C. Zhang,Perspectives in Optoelectronics, Ed. By Sudhanshu S. Jha,
    Would Scientific, chapter 3 (1995)
    [9] D.Some and Arto V. Nurmikko, Phys. Rev. B 53, R 13295 (1996)
    [10] Hideyuki Ohtake, shingo Ono, Masahiro Sakai, Zhenlin Liu, Takeyo
    Tsukamoto, and Nobuhiko Sarikura, Appl. Phys. Lett., 76, 1398 (2000)
    [11] J.T. Kindt , C.A. Schmuttenmaer, J. Phys Chem., 100(24), 10373 (1996)
    [12] D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R.G. Baraniuk and M. C.
    Nuss, Appl. Phys. B-Lasers and optics, 67(3), 379 (1998)
    [13] Zhiping Jiang, Ming Li, X.C.Zhang, Appl. Phys. Lett., 76, 3221 ( 2000)
    [14] Iijima S. Nature. 354, 56 (1991)
    [15] Tuzun RE, Noid DW and Sumpter BG, Nanotechnology, 6, 64 (1995)
    [16] Yihua Gao, Yoshio Bando, Nature 415, 599 (2002)
    [17] S Li et al. Nano Lett. 4, 753 (2004)
    [18] D.E.Aspnes, Thin Solid Films. 89, 249-262 (1982)
    [19] Stefano Giordano, Journal of Electrostatics. 58, 59-76 (2003)
    [20] Ari Sihvola, Electromagnetic mixing formulas and applications. (London :
    Institution of Electrical Engineers, c1999 )
    [21] H. W. Kroto, J. R. Heath, S. C. O`Brien, R. F. Curl, and R. E. Smalley,
    Nature 318, 162 (1985)
    [22] Zhou O, Fleming RM, Murphy DW, Science. 263, 1744 (1994)
    [23] C.-H. Kiang, M. Endo, P. M. Ajayan, G. Dresselhaus, and M. S.
    Dresselhaus, Phys. Rev. Lett. 81, 1869 (1998)
    [24] M. Buongiorno Nardelli, C. Brabec, A. Maiti, C. Roland and J. Bernholc,
    Phys. Rev. Lett. 80, 313 (1998)
    [25] Feng-Huan Sha, Long-Mao Zhao, Gui-Tong Yang, New Carbon Materials.
    21, 248 (2006)
    [26] Hao Yu, Qiang Zhang, Qunfeng Zhang, Qixiang Wang, Guoqing Ning,
    Guohua Luo and Fei Wei, Carbon, 44, 1706 (2006)
    [27] S. Costa, E. Borowiak-Palen, M. Kruszynska, A. Bachmatiuk, R. J.
    Kalenczuk, Materials Science-Poland, Vol. 26, No. 2, 433 (2008)
    [28] X. C. Zhang and D. H. Auston, J.Appl.Phys, 71,326 (1992)
    [29] X. C. Zhang and D. H. Auston, J.Electron. Wave Appl. 6, 85 (1992)
    [30] D.H. Auston, “Picosecond optoelectronic switching and gating in silicon”,
    Appl. Phys. Lett. 26, 101 (1975)
    [31] C. Lee, “Picosecond optoelectronic switching in GaAs”, Appl. Phys. Lett.
    30, 84 (1977)
    [32] S. L. Chuang, S. Schmitt-Rink, B. I. Greene, P. N. Saeta, and A. F. J. Levi,
    Phys. Rev. Lett. 68, 102 (1992)
    [33] B. B. Hu et al. Phys. Rev. Lett. 67, 2709 (1991)
    [34] Q. Wu and X. C. Zhang, Appl. Phys. Lett. 67, 2523 (1995)
    [35] Q. Wu and X.-C. Zhang, Appl. Phys. Lett. 68, 1604 (1996)
    [36] Q. Wu, M. Litz, and X.-C. Zhang, Appl. Phys. Lett. 68, 2924 (1996)
    [37] C. zener, Phys.Rev., 82, 403 (1951)
    [38] Kwang-Su Lee, Toh-Ming Lu, and X.-C. Zhang, Microelectronics Journal,
    34, 63 (2003)
    [39] 固態物理學導論(Kittle, Introduction to Solid State Physics 中譯本), 高立
    出版社, 第七版
    [40] Maik Scheller, Steffen Wietzke, Christian Jansen, and Martin Koch, J.Phys.
    D: Appl. Phys. 42, 1 (2009)
    [41] Dong Wen, Xu Ping and Cao Haixia, China Academic Journal Electronic
    Publishing House, vol(13), No.2, 31 (2003)
    [42] Fusakazu Matsushima, Hitoshi Odashima, Takao Iwasaki, Shozo
    Tsunekawa, Kojiro Takagi, Journal of Molecular Structure 352/353 (1995)
    371-378
    [43] Applications for Terahertz Time-domain Spectroscopy by R. Foltynowicz
    [44] Tae-In Jeon, Keun-Ju Kim, et al., Appl. Phys. Lett., 80, 3403 (2002)
    [45] A.E. Aliev, C. Guthy, M. Zhang, S. Fang, A.A. Zakhidov and J.E. Fischer,
    Carbon, 45 (15), 2880 (2007)
    [46] A. Ugawa, A.G. Rinzler, and D.B. Tanner, Phys. Rev. B, 60, R11305 (1999)
    [47] Tae-In JEON, Joo-Hiuk SON, Gye Hyuck AN and Young Hee LEE, Journal
    of the Korean Physical Society, 39, S185 (2001)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE